ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039
     FacebookTwitterLinkedinMendeley

A Brief Review on Homo-/Hetero-nuclear Co-ordination Compounds Derived from Some Single Compartmentl Acyclic Schiff Base Ligands having N-,O-Donor Centres

Arpita Biswas

Department of Chemistry, Shibpur Dinobundhoo Institution (College), 412/1, G.T. Road (South), Howrah, West Bengal, India.

Corresponding Author E-mail: abiswas83@gmail.com

DOI : http://dx.doi.org/10.13005/ojc/380417

Article Publishing History
Article Received on : 09 Jun 2022
Article Accepted on :
Article Published : 20 Jul 2022
Article Metrics
Article Review Details
Reviewed by: Dr. Pradeep
Second Review by: Dr. Gufran Ali
Final Approval by: Dr. P. Thanasekaran
ABSTRACT:

Tetradentate acyclic compartmental Schiff base ligand with N2O2 compartment afford suitable coordination environment for large variety of metal ions. This type of ligands can easily be synthesized by [2+1] condensation of a carbonyl compounds with a diamine. Several metal complexes have been reported from the single- and double-compartment acyclic Schiff base ligands which are the [2+1] condensation products of salicylaldehyde, 2-hydroxyacetophenone, 3-methoxysalicylaldehyde, 3-ethoxysalicylaldehyde and a diamine; The diamine counterpart in these ligands are ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1-methylethylenediamine, 2,2-dimethyl,1,3-diaminopropane, o-phenylenediamine, trans-1,2-diaminocyclohexane, etc. Several review article has been published previously on compartmental Schiff base ligand compounds. This review article focused only the type and structures of Cu(II)/Ni(II)-second metal (s-, p-, d10-, 3d-,, 4f- block metal) homo-/hetero- nuclear coordination comppounds derived from single compartmentl salicyaldehyde-diamine and acetophenone-diamine ligand systems.

KEYWORDS:

Acetophenone; Coordination Compound; Diamine; Single compartment acyclic Schiff base ligand; Structure; Salicyaldehyde

Download this article as: 

Copy the following to cite this article:

Biswas A. A Brief Review on Homo-/Hetero-nuclear Co-ordination Compounds Derived from Some Single Compartmentl Acyclic Schiff Base Ligands having N-,O-Donor Centres. Orient J Chem 2022;38(4).


Copy the following to cite this URL:

Biswas A. A Brief Review on Homo-/Hetero-nuclear Co-ordination Compounds Derived from Some Single Compartmentl Acyclic Schiff Base Ligands having N-,O-Donor Centres. Orient J Chem 2022;38(4). Available from: https://bit.ly/3aTqpy6


Introduction

In the design of metal–ligand complexes the choice of metal ions and the information encoded in the ligands are very important. There are many factors at the back for the choice of the ligand like its connectivity, dimensionality, size, shape, conformation, etc. The Salen-type Schiff base ligands can easily be synthesized1−3 and can form complexes with almost all metal ions from different parts of the periodic table to form homo- and hetero-nuclear complexes.14−90 In recent years, great interest has been devoted to homo- and hetero-nuclear complexes derived from Schiff base ligands due to their magnetic4 and exciting structural properties. Schiff base ligands and their homo- and hetero-nuclear metal complexes have a range of applications including biological,5,6 analytical,7 industrial use as catalysts.8,9 the reaction of the single- and double-compartment acyclic Schiff base ligands with a suitable metal salt produces a mononuclear compound in which the metal ion occupies the N(imine)2O(phenoxo)2 compartment.10−13 When several second metal ions (such as s-, p-, d-, f-block metal salt) from different parts of the periodic table are treated with the Cu(II)/Ni(II) mononuclear compounds then Cu(II)/Ni(II)-second metal homo-/hetero- nuclear complexes are produced. However various types of copper(II)/nickel(II)–second metal (s-, p-, d-, f- block metal) complexes14−90 were reported previously from single compartmental salen-type Schiff base ligand which include dinuclear,20,21,24,25–33,47–50,80–84  trinucler,22,23,36–42,52–55,85–87 tetranuclear,16 pentanuclear,14 hexanuclear,15 dimer of dinuclear,21,32,44–46,50,56–59,81dinuclear based plymer,34,35,46,51 trinuclear based polymer,18,46,70octanuclear,71 dinuclear–mononuclear cocrystals;81,89 trinuclear–mononuclear cocrystals90 etc. A brief survey of those compounds is summerised in this review article. Single compartmental Salen-type Schiff base ligands in which aldehyde part is salicylaldehyde and 2-hydroxyacetophenone and the diamine parts comes from ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1-methylethylenediamine, 1,1-dimethylethylenediamine, 2,2-dimethyl-1,3-diaminopropane, o-phenylenediamine, trans-1,2-diaminocyclohexane are considered in this survey. The primary aim of this survey is to mention which second metal ions are used in the copper (II)/nickel(II)–second metal ion compounds and so definitely the types of compounds are not restricted among the types mentioned in this review article.

Structural Discussion

A brief structural survey of Cu(II)/Ni(II)-second metal (s-, p-, d10-, 3d-, 4f- block metal) homo/hetero nuclear coordination compounds derived from single compartmentl salicyaldehyde-diamine and acetophenone-diamine ligand systems have been mentioned in the following five subsections. The structure and abbreviation of ligand systems considered [salicylaldehydediamine (H2Lsal-diamine), 2-hydroxyacetophenone-diemine (H2Lacpn-diamine)] in this survey are demonstrated in Table 1. The coordination number of second metal centre(s) and the ligand systems from which the differenttypes of Copper(II)/nickel(II) s-, p-, d10-,3d- and, 4f-metal ion compounds are reported (which are mentioned in this survey) also summarized in the Tables 2, 3 and 4 respectively in the subsections.

Table 1: Chemical structures and abbreviation of H2Lsal/acpn-diamine ligands.

Click here to View table

Copper(II)/nickel(II)–s block metal ion complexes

Among the alkali metal ions, only few compounds of sodium (I) 14−18 are known. Regarding the alkaline earth metal ions, only one barium(II) system (NiIIBaIINiII) is known.19 The sodium(I) systems include pentanuclear triple-decker NiII3NaI2,14 hexanuclear  NiIINaI,15, trinuclear CuIINaICuII,16,17 trinuclear NiIINaINiII,15 trinclear CuIINaICuII based polymer,18 trtranuclear CuII3NaI16  etc. In all the above mentioned  copper(II)/nickel(II)-sodium(I) compounds and one nickel(II)-barium(II) compounds the copper(II)/nickel(II) centre is tetra coordinated by two bridging phenoxo-oxygen atoms and two imine nitrogen atoms of the Schiff base ligand and adopt a square-planer/distorted square-planar geometry, except one trinuclear CuIINaICuII compound (derived from H2Lacpn–pn) in which copper(II)/nickel(II) centre is penta-coordinated with the axial position occupied by one beidging phenoxo oxygen atom of adjacent CuIILacpn–pn mononuclear unit. Whereas in all the above mentioned copper(II)/nickel(II)-sodium(I) compounds14−18  the sodium(I) centre is hexa-coordinated by six bridging phenoxo oxygen atoms15,16 or  by four bridging phenoxo oxygen atoms and two oxygen atoms of prechlorate/isothiocyanate14−18 ligand except one pentanuclear triple-decker NiII3NaI2 compound14 (derived from H2Lsal–opda)  and one trinuclear CuIINaICuII compound17 (derived from H2Lacpn–1Meen in which sodium(I) centre is hepta-coordinated with the 7th position occupied by a oxygen atom of water molecule). For pentanuclear triple-decker NiII3NaI2 compound14 each sodium(I) centre is hexa-coordinated with four bridging phenoxo oxygen atoms and one nitrogen atom of terminal cyano group and one nitrogen atom of bridging cyano group and is sandwiched between two NiII-mononuclear units. whereas hexanuclear NiII5NaI2 system15  consists of tetrametallic cluster ion [{Ni(H2Lsal–1Meen)}3Na]+ with encapsulated sodium by three [Ni(H2Lsal–1Meen)] units and two mononuclear [Ni(H2Lsal–1Meen)] units. The only example of barium(II) system is a trinuclear double-decker NiIIBaIINiII compound19 in which the barium(II) centre is eight-coordinated by four bridging phenoxo oxygen atoms of two schiff base ligand, three oxygen atoms of perchlorate and one oxygen atom of furan ring forming a distorted square antiprismatic geometry and the barium(II) cation is sandwiched between two NiII-mononuclear units.19 Among the above mentioned systems crystal structure of pentanuclear triple-decker NiII3NaI2 compound is shown in Fig.1.

Figure 1: Crystal structure of [(NiIILsal–op)3Na2(CH3CN)3][NiEt8Py4]∙CH3CN (Py = pyrrolyl). t is a pentanuclear NiII3NaI2 complex showing triple-decker topology. Anions, solvent acetonitrile molecule and all the hydrogen atoms are omitted for clarity.14

Click here to View figure 

Copper(II)/nickel(II)–p block metal ion complexes

A few dinuclear NiIIPbII 20,21 and trinuclear CuIIPbIICuII,22,23 dimer-of-dinuclear [NiIIPbII]2 (linker is N,N-dimethylformamide molecules),21 dinuclear CuIIBiIII24 and NiIIBiIII24 compounds are known.For the dinuclear CuIIBiIII, NiIIBiIII and trincuclaer CuIIPbIICuII compounds22,23,24 the copper(II)/nickel(II) centre are tetra coordinated by two bridging phenoxo-oxygen atoms and two imine nitrogen atoms of the Schiff base ligands to adopt a square planer/distorted square-planar geometry. Whereas for the dinuclear NiIIPbII and dimer-of-dinuclear [NiIIPbII]2 compound21 the nickel(II) centre(s) are hexa-coordinated by two bridging phenoxo-oxygen atoms and two imine nitrogen atoms of the Schiff base ligands and axial positions are occupied by two nitrogen atoms of two solvent pyridine ligands in dinuclear NiIIPbII compound20,21 and by oxygen atom of the water molecule and N atom of the SCN group in dimer-of-dinuclear [NiIIPbII]2 compound21 to adopt a octahedral geometry and slightly distorted octahedral geometry respectively.

However the Pb(II) centre(s) are, i) four coordinated involving two phenoxo oxygen atoms of the Schiff base ligand and two chlorine atoms with heavily distorted tetrahedral environment for the dinuclear NiIIPbII compound,20,21  ii) hexa-coordinated involving four bridging phenoxo-oxygen atoms of two Schiff base ligand and two Cl/I/SCN ligand with a distorted octahedral geometry for trinuclear CuIIPbIICuII compounds,22,23 iii) hexa-coordinated involving two phenoxo-oxygen atoms of Schiff base ligand, two bridging S atoms SCN group and two bridging O atoms of N,N-dimethylformamide molecules with a highly distorted octahedral geometry for dimer-of-dinuclear [NiIIPbII]2 compound21 and iv) octa-coordinated with two phenoxo-oxygen atoms of Schiff base ligand and four oxygen atom of two salicylate ion with approximately a capped pentagonal bipyramidal geometry for dinuclear CuIIBiIII and NiIIBiIII compounds.24 Among the above mentioned systems crystal structure of dimer-of-dinuclear21 [NiIIPbII]2 is shown in the Fig. 2.

Figure 2: Crystal structure of [NiIILsal–pnPbII(SCN)2(dmf)(H2O)]2. It is a dimer-of-dinuclear system in which two dinuclear NiIIPbII units are interlinked by two  N,N-dimethylformamide molecules. Hydrogen atoms are not shown for clarity.21

Click here to View figure 

Copper(II)/nickel(II)–d10 metal ion complexes

Several compounds are known containing copper(II)/nickel(II) and d10 metal ion such as ZnII, CdII and HgII.25–46 The types of compounds include dinuclear CuIIZnII, NiIIZnII, CuIIHgII and NiIIHgII,25–33 dinuclear CuIICdII based polymer (linker is dicyanamide),34 dinuclear CuIIHgII based polymer (linker is azide),35 trinuclear CuIIZnIICuII, NiIIZnIINiII, CuIICdIICuII, NiIICdIINiII and CuIIHgIICuII,36–42 and dimer-of-dinuclear [NiIICdII]2(linker is chloride),44 dimer-of-dinuclear [CuIIHgII]2 (Hg–C bond is linker),32 dimer-of-dinuclear [CuIIHgII]2 (linker is chloride), 45 dimer-of-trinuclear [CuIICdIICuII]2(linker is dca),46 CuIICdIICuII based polymer46 etc.

It has been observed that for dinuclear CuIIZnII and CuIIHgII,25–27,31,32 trinuclear CuIIZnIICuII, CuIICdIICuIIand CuIIHgIICuII compounds36,37, 39–41,43   in most of the cases the copper(II) centre(s) are tetra-coordinated and in few cases copper(II) centre(s) are penta-coordinated with the axial position occupied by oxygen atom of bridging acetate/formate/nitrate ligand or oxygen atom of water/N,N’ dimethylformamide molecule or nitrogen atom of picoline/pyrazine/azide/dicyanamide/thiocyanate ligand, but for dinuclear NiIIZnII, NiIIHgII, trinuclear NiIIZnIINiII, and NiIICdIINiII compounds28,29,33,38,42 in most of the cases nickel(II) centre(s) are penta/hexa-coordinated with the axial position occupied by oxygen atom of bridging acetate/formate/nitrate ligand or oxygen atom of methanol/N,N’ dimethylformamide molecule or nitrogen atom of picoline/pyrazine/azide/dicyanamide/thiocyanate ligand. For all the above mentioned compounds the equatorial positions of copper(II)/nickel(II) centre are occupied two bridging phenoxo oxygen atoms and two imine nitrogen atoms of the Schiff base ligand.

The second metal centre i.e. Zn(II)/Hg(II) in all the above mentioned dinuclear compounds25–33 are slightly distorted tetrahedral/irregular tetrahedral geometry. However for dinuclear CuIICdII based polymer,34 the Cd(II) centres are hexa-coordinated by two phenoxo oxygen atoms of Schiff base ligand and four N atoms from four dca ligands to form a distorted octahedral geometry. Moreover all the dca ligands in this compound bridged the Cd(II) ions in single bridge fashion to construct a 2-D structure and it displays a wave-like structure because of the ‘‘V” type conformation of the dca ligand. For dinuclear CuIIHgII based polymer,35 the Hg(II) centre is tetra-coordinated and the azide ion bridge through µ1,1 fashion to form a 1D helical chain. For the dimer-of-dinuclear [NiIICdII]2, [CuIIHgII]2 compound44,45 in which chlorine atom is linker, the Hg(II)/Cd(II)  centres are penta-coordinated with two phenoxo oxygen atom of Schiff base ligand, two bridging Cl atoms and one terminal chlorine atom forming a distorted square pyramidal geometry. However for dimer-of-dinuclear, [CuIIHgII]2 compound32 in which linker is Hg–C bond the Hg atom is tetra-coordinated with two phenoxo oxygen atoms of Schiff base ligand, one Cl atom and one imine carbon atom of Schiff base ligsand. It is to be mentioned that the square pyramidal geometry is quite common for CdII ion but it is unusual for HgII ion.

On the other hand the second metal centre i.e. Zn(II)/Cd(II)/Hg(II) in all the above mentioned trinuclear compounds36–43  is hexa-coordinated by four bridging phenoxo oxygen atoms of two Schiff base ligands and two oxygen atoms of two bridging formate/acetate/nitrate or two nitrogen atoms of two bridging/terminal dca/azide/thiocyanato/isothiocyanato or sulpher atom of terminal thiocyanato ligand to adopt a octahedral/distorted octahedral geometry, except one trinuclear CuIIZnIICuII compound37 (derived from H2Lsal–pn) in which the second metal centre hepta-coordinated with 7th position is occupied by Zn(II) centre. It has to be mentioned that among the above mentioned compound, only in one dinuclear NiIIZnII and one trinuclear CuIIZnIICuII compound,30,37 metal−metal (Ni−Zn/Cu−Zn) coordinate bond have been observed. For the dimer-of-dinuclear [CuIIHgII]2 and [CuIICdII]2compounds44,45 Cl-ion bridged by µ2-fashion to form tetranuclear compound. Among the above mentioned systems crystal structure of dinuclear [NiIILsal–1-MeenHgCl2]33 is shown in Fig. 3.

Figure 3: Crystal structure of dinuclear compound [NiIILsal–1-MeenHgCl2]. Hydrogen atoms are not shown for clarity.33

Click here to View figure 

Table 2: The coordination number of second metal centre(s) (s-, p- and d10-metal ion) and the ligand systems from differenttypes of Copper(II)/nickel(II) s-, p- and d10-metal ion complexes have been reported.

 

Ligand systems

Dinuclear

(CN of second metal)

Trinuclear

(CN of second metal)

Dimer-of-dinuclear/polynuclear(CN of second metal)

Reference no.

s-block metal

H2Lsal–en

NiIIBaIINiII(8)

19

H2Lsal–1Meen

NiIINaINiII(6)

15

H2Lsal–pn

CuIINaICuII(6)

16

NiII5NaI (6)

15

H2Lsal–opda

NiII3NaI2(6)

14

H2Lacpn–pn

CuIINaICuII(6) based polymer

18

CuII3NaI(6)

16

H2Lacpn–1-Meen

CuIINaICuII(7)

17

p-block metal

H2Lsal–en

 

CuIIBiIII (8)

24

NiIIBiIII(8)

24

H2Lsal–pn

CuIIPbIICuII(6)

 

22

NiIIPbII(4)

 

[NiIIPbII]2(6)

20,21

H2Lacpn–pn

 

CuIIPbIICuII(6)

23

d10-metal

H2Lsal–en

NiIIZnII(4)

29

H2Lsal–2,2-Mepn

CuIIZnII(4)

CuIICdIICuII (6)

25,40

NiIIZnII(4)

28

H2Lsal–pn

CuIIZnII(4)

CuIIZnIICuII(6,8)

26,36,37

NiIIZnII(4)

NiIIZnIINiII(6)

29,38

CuIICdII(6) based polymer

CuIICdIICuII (6)

CuIICdIICuII (6) based polymer

[CuII2CdII]2(4) dimer of  trinuclear

34,39, 46

NiIICdIINiII(6)

42

CuIIHgII(4) based polymer

CuIIHgIICuII(6)

35,43

NiIIHgII(4)

33

H2Lsal–bu

CuIIZnII(4)

CuIIHgIICuII(6)

[CuIIHgII]2(5)

26,43,45

H2Lsal–hex

CuIIHgII(4)

31

H2Lacpn–en

CuIIZnII(6)

27

H2Lacpn–1-Meen

NiIIHgII(4)

[NiIICdII]2(5)

33

H2Lacpn–pn

[CuIIHgII]2(4)

32

CuIICdIICuII(6)

CuII3CdII(6)

41

CuIIHgII(4)

CuIIHgIICuII(6)

32

Copper(II)/nickel(II)–3d metal ion complexes

Several homonuclear copper(II) compounds are known.47–60 The types of such compounds include dinuclear CuIICuII,47–50 dinuclear CuIICuII based polymer,51  trinuclear CuIICuIICuII, 52–55dimer-of-dinuclear [CuIICuII]2 (linker is azide or chloride or dca).50,56–59In contrast, the number of nickel(II)–copper(II) compounds are only a fewwhich include few trinuclear NiIICuIINiII compounds.60–62 The number of compounds obtained on reacting mononuclear copper(II) compounds with NiII is only a few. 63–65 Two dinuclear CuIINiII systems published long ago in 1985 and 1989 and one trinuclear CuIINiIICuII compound65 may be mentioned as examples of copper(II)–nickel(II) compounds. In contrast to only a few copper(II)–nickel(II) compounds, the nickel(II)–nickel(II) compounds are several.66–71 Most of these systems are trinuclear NiIINiIINiII compounds67–70 and there is one interesting example of a octanuclear NiII8 clusture (linker is chloride).71 Regarding copper(II)/nickel(II) as the first metal ion (in the N2O2 compartment) and cobalt(II) as the second metal ion, only a few dinuclear CuIICoII/NiIICoII and trinuclear NiIICoIINiII compounds have been reported.62,72–75 Regarding copper(II)/nickel(II)–iron(II) compounds, there are only two examples and those are copper(II)–iron(II) systems.76,77 Those include trinuclear CuIIFeIICuII76 and tetranuclear CuII3FeII based polymer.77 With manganese(II) as the second metal ion, the number of compounds are more in comparison to those in which iron(II)/cobalt(II) is second metal ion. The copper(II)/nickel(II)–manganese(II) systems include dinuclear CuIIMnII and NiIIMnII,78,79 trinuclear CuIIMnIICuII80 and NiIIMnIINiII,62 tetranucler CuII3MnII etc.80

In all the reported compounds the coordination number of first metal centre i.e. copper(II)/nickel(II) centre is ranges from four to six. Whereas the coordination number of second metal centre is two/four/five/six/seven for copper(II), five/six/seven for nickel(II), four/ six for cobalt(II), four/six for iron(II) and six for manganese(II) centre. However it is to be mentioned that among the above mentioned compounds, only in very few compounds, metal−metal coordination bond have been found which include dinuclear64 CuIINiII and trinuclear NiIICuIINiII, NiIINIIINiII 67 derived from H2Lsal–en and H2Lsal–pn ligand system repectively. For the thre dimer-of-dinuclear [CuIICuII]2 compounds50,56–59Cl-ion bridged by µ2 fashion, azide ion bridged by µ1,1 and µ1,3 fashion and dca ion bridged by µ1,5 fashion to form tetranuclar( dimer-of-dinuclear) compound. The octanuclear NiII8 clusture71 consist of four independent nickel atoms with three different coordination geometry, two nickel(II) centre are sit in the N2O2 cavity of Schiff base ligand with square-planar geometry, one nickel(II) centre is six-coordinated by two brigdind phenoxo oxygen atoms of Schiff base ligand and four bridging µ2-Cl atoms forming a distorted octahedral geometry and another nickel(II) centre is five coordinated by two brigdind phenoxo oxygen atoms of Schiff base ligands, two bridging µ2-Cl atoms and one terminal Cl atoms to adopt distorted square pyramidal geometry. The tetranuclear77 CuII3FeII based polymer consists of trinuclear {CuII2FeIII} unit and a mononuclear {CuII(H2Lsal–1-Meen)} unit, arranged in helicoidal polymeric chains. Each copper(II) centre in trinuclear {CuII2FeII} unit is five coordinated and the copper(II) centre sits in the N2O2 cavity of Schiff base ligand and the fifth position is occupied by the bridging phenoxo oxygen atom of mononuclear {CuII(H2Lsal–1-Meen)} unit to form polymeric chan. However the copper(II) centre in mononuclear {CuII(H2Lsal–1-Meen)} unit is four coordinated in the N2O2 cavity of Schiff base ligand. Among the above mentioned systems crystal structure of octanuclear NiII8 compound is shown in Fig. 4.

Table 3: The coordination number of second metal centre (s) (3d-metal ion) and the ligand systems from which the above mentioned types of Copper(II)/nickel(II)−3d- metal ion complexes have been reported.

Ligand system

Dinuclear (CN of 2nd 3d mtal ion)

Trinuclear (CN of 2nd 3d mtal ion)

Dimer-of-dinuclear (CN of 2nd 3d mtal ion)

Poly nuclear (CN of 2nd 3d mtal ion)

Reference no.

H2Lsal–en

CuIICuII(2,5,6)

CuIICuIICuII(6,7)

[CuIICuII]2(5)

47,52,56

CuIINiII(6,7)

NiIICuIINiII(6)

63,64,60

NiIINiII(5)

NiIINiIINiII(6)

66, 68

CuIICoII(4,6)

72,73

CuIIMnII(6)

78

H2Lsal–opda

CuIICuII(5)

octanuclear NiII8(5,6)

48, 71

H2Lsal–1-Meen

 

[CuIICuII]2(5)

58

H2Lsal–hex

CuIICuII(5)

[CuIICuII]2(4)

50

H2Lsal–pn

CuIICuII(4)

CuIICuIICuII(4,5,6)

[CuIICuII]2(5)

CuIICuII(4) dinuclear based polymer

49,53, 57, 51

NiIICoII(4)

NiIICuIINiII(6,7)

NiIINiIINiII(6) trinuclear based polymer

74, 61, 70

NiIINiIINiII(6,8)

67

NiIICoIINiII (6)

75

NiIIMnIINiII (6)

79

H2Lsal–2,2-Me2pn

NiIICuIINiII(6)

62

NiIICoII(6)

NiIICoIINiII (6)

74, 62

NiIIMnIINiII (6)

62

H2Lsal–bu

NiIICoII(4)

NiIINiIINiII(6)

74, 69

H2Lacpn–en

 

CuIICuIICuII(5)

CuII3FeII(6) based polymer

54,  77

H2Lacpn–pn

CuIICuIICuII(4,6)

[CuIICuII]2(5,6)

55, 59

CuIINiIICuII(6)

65

 

 

CuIIMnIICuII (6)

CuII3MnII(6)

80

 

Figure 4: Crystal structure of octanuclear [Ni8II(Lsal–op)4Cl8·(H2O)0.5] compound. Hydrogen atoms are omitted for clarity.71

Click here to View figure 

Copper(II)/nickel(II)–4f metal ion complexes

A number of copper(II)/nickel(II)–lanthanide compoundsare known from this class of ligands.81–89 The types of systems include: (i) Dinuclear CuIIPrIII, CuIIGdIII, NiIIPrIII, NiIIGdIII and NiIIYbIII; 81–84  iii) Trinuclear CuIICeIIICuII, CuIISmIIICuII and CuIIGdIIICuII CuIIDyIIICuII; 85–87  (iii) Dimer-of-dinuclear [CuIIPrIII]2 (linker is 4,4′-bipyridine, pyrazine),81 Dimer-of-dinuclear [CuIIEuIII]2 (linker is nitrate),88  [2×1+1×1] Dinuclear–mononuclear cocrystals of i) one Dinuclear NiIIPrIII and one mononuclear NiII units81 ii) one Dinuclear CuIIErIII and one mononuclear CuII units89 (iv) [3×1+1×2] Trinuclear–mononuclear cocrystal of one CuIIGdIIICuII and two CuII units.90 For all the above mentioned copper(II)/nickel(II)–lanthanide compounds the copper(II)/nickel(II) ion is four coordinated with square planer geometry except the case of one CuIIGdIIICuII and trinuclear CuIIDyIIICuII compounds87 (derived from H2Lsal–pn) in which the copper(II) centre is five coordinated with bridging oxygen atom of trifluoro acetate ligand to form square pyramidal geometry. Whereas the coordination number of Ln(III) varies from seven to ten. Among the above mentioned systems crystal structure of [3×1+1×2] trinuclear-mononuclear cocrystal of one CuIIGdIIICuII and two CuII units are shown in Fig. 5.

Figure 5: Crystal structure of a pentanuclear [3×1+1×2] cocrystal [{(CuIILsal–en )2GdIII(H2O)3}{CuIILsal–en}2](ClO4)3. Hydrogen atoms and perchlorate ions are omitted for clarity.90

Click here to View figure 

Table 4: The coordination number of second metal centre(s) (LnIII-metal ion) and the ligand systems from which the above mentioned types of Copper(II)/nickel(II)−4f-block metal ion complexes have been reported.

 

Dinuclear (CN of LnIII)

Trinuclear (CN of LnIII)

Dimer-of-dinuclear/Cocrystal (CN of LnIII)

Reference no.

H2Lsal–en

CuIICeIIICuII(10)

85

CuIIPrIII(8)

Dimer-of-dinuclear [CuIIPrIII]2(9

81

NiIIPrIII(9)

Cocrystal of one dinuclear NiIIPrIII and one mononuclear NiII unit(9)

81

Dimer-of-dinuclear [CuIIEuIII]2(9)

88

CuIIGdIII(7,9)

Cocrystal of one trinuclear CuIIGdIIICuII and two mononuclear CuII unit(7, 8, 9)

83,84,90

NiIIGdIII(8)

82

H2Lsal–opda

NiIIYbIII(8)

82

H2Lsal–1,1-Me2en

CuIICeIIICuII(10)

Cocrystal of one dinuclear CuIIErIII and one CuII units(9)

86, 89

H2Lsal–pn

CuIICeIIICuII(10)

86

CuIISmIIICuII(10)

86

CuIIGdIIICuII(8,9)

87

CuIIDyIIICuII(7)

87

H2Lsal–bu

CuIIGdIII(9)

83

H2Lacpn–en

CuIIGdIIICuII(7)

Cocrystal of one Trinuclear CuIIGdIIICuII and one CuII unit(7)

90

 

Conclusion

Compertmental Schiff base ligand and their metal complexes are one of the most important chemical classes of compounds having a variety of important feature and structural diversity. The nuclearity and dimensionality of the coordination compound derived from single compertmental Schiff bases ligand may be increased by employing bridging ligand like azide, dca, thiocyate, nitrate, formate, acetate etc. Several review articles were published earlier on Schiff base compound and their catalytic activity, biological applications etc. But regarding the structural aspects of co-ordination compound derived from single compartmental acyclic Schiff base  ligand having N-,O- donor centre in which the amine is a diamine is not reviewed yet. In these studies particular attention is devoted to copper (II)/nickel(II)–second metal ion compounds (s-, p-, d10-,3d-, 4f- block metal) derived from single-compertmental acyclic slicyaldehyde-diamine and acetophenone diamine Schiff base ligand systems. The significance of this survey is to mention which second metal ions are used in the copper (II)/nickel(II)–second metal ion compounds and so definitely the types of compounds are not restricted among the types mentioned. This survey also present the significant structural aspects of coordination compounds derived from acyclic single-compertmental diamine Schiff base ligand. The structural versatility and exciting structural aspects of eight salicyaldehyde-diamine and eight acetophenone-diamine single-compertmental Schiff base copper(II)/nickel(II)–second metal (s-, p-, d10-,3d-, 4f- block metal) compounds have been reviewed in this review article. Therefore, it is to be expected that more unusual coordination architectures will be possible from single-compertmental diamine Schiff base ligand system and the outcome of such designed structure will be expected to have tremendous importance to coordination chemistry and crystal engineering.

Acknowledgement

I would like to acknowledge all the respected teachers of department of Chemistry, Shibpur Dinobundhoo Institution (College) for their constant support in the field of chemistry.

Conflict of Interest

The author states that there is no conflict of interest.

Funding Sources

There is no funding source.

References

  1. Maher, K. A.; Mohammed, S. R. Int. J. Cur. Res. Rev. 2015, 7, 6−16.
  2. Fabbrizziklo, L. J. Org. Chem. 2020, 85, 12212−12226.
    CrossRef
  3. Raczuk, E.; Dmochowska, B.; Samaszko-Fiertek, J.; Madaj, J. Molecules 2022, 27, 787−910.
    CrossRef
  4. Winpenny, R. E. P. Chem. Soc. Rev., 1998, 27, 447−452.
    CrossRef
  5. Abu-Dief, A. M.; Mohamed I. M. A. J. Basic and Appl. Sci. 2015, 4, 119−133.
    CrossRef
  6. Silva, C. M. da; Silva, D.l L. da; Modolo, L. V.; Alves, R. B.; Resende, M. A. de; Martins, C. V. B. Ângelo, F.de; J. Adv. Res. 2011, 2, 1–8.
    CrossRef
  7. Bühlmann, P.; Yahya, L.; Enderes, R. Electroanalysis 2004, 16, 973−978.
    CrossRef
  8. Che, C.; Kwong, H.; Chu, W.; Cheng K.; Lee, W.; Yu, H.; Yeung, C.; Cheung, K. Eur. J. Inorg. Chem. 2002, 1456−1463.
    CrossRef
  9. Iida, K.; Oonishi, I.; Nakahara, A.; Komiyama, Y. Bull. Chem. Soc. Jpn. 1970, 43,2347−2354.
    CrossRef
  10. Vazquez-Fernandez, M. A.; Bermejo, M. R.; Fernandez-Garcia, M. I.; Gonzalez-Riopedre, G.; Rodriguez-Douton, M. J.; Maneiro, M. J. Inorg. Biochem. 2011, 105,1538−1547.
  11. Wang, X. Acta Cryst. Sec. E, Str. Rep. Online 2009, 65,m1658.
    CrossRef
  12. Franceschi, F.; Solari, E.; Scopelliti, R.; Floriani, C. Angew. Chem. Int. Ed. 2000, 39, 1685−1687.
    CrossRef
  13. Biswas, S.; Naiya, S.; Drew, M. G.B.; Estarellas, C.; Frontera, A.; Ghosh, A. Inorg. Chim. Acta 2011, 366, 219−226.
    CrossRef
  14. Chakrabarty, P. P.; Biswas, D.; Garcia-Granda, S.; Jana, A. D.; Saha, S. Polyhedron 2012, 35, 108−115.
    CrossRef
  15. Ray, A.; Rosair, G. M.; Rajeev, R.; Sunoj, R. B.; Rentschler, E.; Mitra, S. Dalton Trans. 2009, 9510−9519.
    CrossRef
  16. Carbonaro, L.; Isola, M.; Pegna, P. L.; Senatore, L.; Marchetti, F. Inorg. Chem. 1999, 38,5519−5525.
    CrossRef
  17. Reglinski, J.; Morris, S.; Stevenson, D. E. Polyhedron 2002, 21, 2167−2174.
    CrossRef
  18. Kurtaran, R.; Yildirim, L. T.; Azaz, A. D.; Namli, H.; Atakol, O. J. Inorg. Biochem. 2005, 99,1937−1944.
    CrossRef
  19. Atakol, O.; Durmus, S.; Durmus, Z.; Arici, C.; Cicek, B. Synth. React. Inorg. Met. Org. Chem. 2001, 31,1689−1704.
    CrossRef
  20. Biswas, S.; Ghosh, A. Ind. J. Chem. Sect. A: Inorg.Bio-inorg. Phys.Theor. Anal. Chem. 2011, 50, 1356−1362.
  21. Thurston, J. H.; Ely, T. O.; Trahan, D.; Whitmire, K. H. Chem. Mater. 2003, 15,4407−4416.
    CrossRef
  22. Svoboda, I.; Arici, C.; Nazir, H.; Durmus, Z.; Atakol, O.; Fuess, H. Acta Cryst. Sect. E, Struct. Rep. Online 2001, 57, m584−m586.
    CrossRef
  23. You, Z.-L.; Lu, Y.; Zhang, N.; Ding, B.-W.; Sun, H.; Hou, P.; Wang, C. Polyhedron 2011, 30,2186−2194.
    CrossRef
  24. Teixidor, F.; Flor, T.; Casabó, J.; Miravitlles, C.; Rius, J.; Molins, E. Inorg. Chim. Acta, 1986, 122, 95−101.
    CrossRef
  25. Atakol, O.; Nazir, H.; Arici, C.; Durmus, S.; Svoboda, I.; Fuess, H. Inorg. Chim. Acta 2003, 342,295−300.
    CrossRef
  26. Dzugan, S. J.; Goedken, V. L. J. Organomet. Chem. 1988, 356,249−258.
    CrossRef
  27. Yıldırım, L. T.; Atakol, O.; Kavak, G. Acta Crystallogr., Sect. E: Struct. Rep.Online, 2007, 63, m2489−m2489
  28. Colon, M. L.; Qian, S. Y.; Vanderveer, D.; Bu, X. R. Inorg. Chim. Acta 2004, 357,83−88.
    CrossRef
  29. Biswas, S.; Saha, R.; Ghosh, A. Organometallics, 2012, 31, 3844−3850.
    CrossRef
  30. Karmakar, D.; Fleck, M.; Saha, R.; Layek, M.; Kumar, S.; Bandyopadhyay, D.Polyhedron 2013, 49, 93−99.
    CrossRef
  31. Shi, Q.; Sheng, L.; Ma, K.; Sun, Y.; Cai, X.; Liu, R.; Wang, S.Inorg. Chem. Commun. 2009, 12, 255− 258.
    CrossRef
  32. Das, L. K.; Kadam, R. M.; Bauzá, A.; Frontera, A.; Ghosh, A. Inorg.Chem. 2012, 51, 2407−12418.
    CrossRef
  33. Ulku, D.; Tatar, L.; Atakol, O.; Durmus, S. Acta Cryst. Sect. C, Cryst. Struct. Commun. 1999, C55, 1652−1654.
    CrossRef
  34. Fukuhara, C.; Tsuneyoshi, K.; Matsumoto, N.; Kida, S.; Mikuriya, M.; Mori, M. J. Chem. Soc., Dalton Trans. 1990, 3473−3479.
    CrossRef
  35. Ercan, F.; Ates, M. B.; Ercan, Y.; Durmus, S.; Atakol, O. Cryst. Res. Technol. 2004, 39, 470−476.
    CrossRef
  36. Ercan, F.; Ulku, D.; Atakol, O.; Dincer, F. N. Acta Cryst. Sect. C, Cryst. Struct. Commun. 1998, 54, 1787−1790.
    CrossRef
  37. Öz, S.; Kurtaran, R.; Arıcı, C.; Ergun, Ü.; Kaya, F. N. D.; Emregül, K. C.; Atakol, O.; Ülkü, D. J. Therm. Anal. Calorim. 2010, 99, 363−368.
    CrossRef
  38. Biswas, S. Ghosh, A. Polyhedron, 2011, 30, 676−681.
    CrossRef
  39. You, Z.-L. Z. Anorg. Allg. Chem. 2006, 632,664−668.
    CrossRef
  40. Yildirim, L. T.; Kurtaran, R.; Namli, H.; Azaz, A. D.; Atakol, O. Polyhedron 2007, 26,4187− 4194.
    CrossRef
  41. Bandyopadhyay, D.; Karmakar, D.; Pilet, G.; Fleck, M. Polyhedron 2011, 30, 2678−2683.
    CrossRef
  42. Ercan, I.; Ercan, F.; Arici, C.; Atakol, O. Acta Cryst. Sect. C, Cryst. Struct. Commun. 2002, 58,m137− m138.
    CrossRef
  43. Das, L. K.; Ghosh, A. Cryst Eng Comm, 2013, 15, 9444−9456.
    CrossRef
  44. Bresciani-Pahor, N.; Calligaris, M.; Nardin, G.; Randaccio, L.; Fenton, D. E. Trans. Met. Chem. 1980, 5,180−183.
    CrossRef
  45. Maity, D.; Drew, M. G. B.; Godsell, J. F.; Roy, S.; Mukhopadhyay, G. Trans. Met. Chem. 2010, 35, 197−204.
    CrossRef
  46. Gamba, I.; Gamez, P.; Monzani, E.; Casella, L.; Mutikainen, I.; Reedijk, J. Eur. J. Inorg. Chem. 2011, 4360− 4368.
    CrossRef
  47. Khalaji, A. D.; Hadadzadeh, H.; Fejfarova, K.; Dusek, M. Polyhedron, 2010, 29, 807−812.
    CrossRef
  48. Biswas, S.; Ghosh, A. Polyhedron, 2012, 39, 31−37.
    CrossRef
  49. You, Z.-L.; Zhu, H.-L. Z. Anorg. Allg. Chem. 2004, 630,2754− 2760.
    CrossRef
  50. Feng, Y.-F.; Wu, H.-Y.; Zhu, B.-L.; Wang, S.-R.; Huang, W.-P. Acta Crystallogr., Sect.E:, Struct. Rep. Online 2007, 63, m1107−m1108.
    CrossRef
  51. Epstein, J. M.; Figgis, B. N.; White, A. H.; Willis, A. C. J.Chem.Soc. Dalton Trans. 1974, 1954−1961.
    CrossRef
  52. Ray, A.; Mitra, S.; Khalaji, A. D.; Atmani, C.; Cosquer, N.; Triki, S.; Clemente-Juan, J. M.; Cardona-Serra, S.; Gomez-Garcia, C. J.; Butcher, R. J.; Garribba, E.; Xu, D. Inorg. Chim. Acta 2010, 363, 3580−3588,
    CrossRef
  53. Bear, C. A.; Waters, J. M.; Waters, T. N. J. Chem. Soc., Dalton Trans. 1974, 1059−1062.
    CrossRef
  54. Khalaji, A. D.; Stoekli-Evans, H. Polyhedron, 2009, 28, 3769−3773.
    CrossRef
  55. You, Z.-L.; Liu, W.-S.; Zhu, H.-L. Trans. Met. Chem. 2004, 29, 653−657. Polyhedron, 2010, 29, 807−812.
    CrossRef
  56. Talukder, P.; Shit, S.; Sasmal, A.; Batten, S. R.; Moubaraki, B.; Murray, K. S.; Mitra, S. Polyhedron, 2011, 30,1767−1773.
    CrossRef
  57. Arici, C.; Ulku, D.; Tahir, M. N.; Atakol, O. Acta Cryst. Sect. E, Struct. Rep. Online 2001, 57,m283−m285.
    CrossRef
  58. Tahir, M. N.; Ülkü, D.; Atakol, O.; Çakirer, O. Acta Cystallogr., Sect. C: 1998, 54, 468−470.
    CrossRef
  59. Ercan, F.; Atakol, O.; Arici, C.; Svoboda, I.; Fuess, H. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2002, 58, m193−m196.
    CrossRef
  60. Journaux, Y.; Khan, O.; Morgenstern-Badarau, I.; Galy, J.; Jaud, J.; Bencini, A.; Gatteschi, D. J. Am. Chem. Soc. 1985, 107,6305−6312.
    CrossRef
  61. Gillon, B.; Cavata, C.; Schweiss, P.; Journaux, Y.; Kahn, O.; Schneider, D. J. Am. Chem. Soc. 1989, 111,7124−7132.
    CrossRef
  62. Biswas, S.; Diaz, C.; Ghosh, A. Polyhedron, 2013, 51, 96−101.
    CrossRef
  63. Ding, Y.; Ku, J.; Wang, L.; Hu, Y.; Zhou, Y. Acta Crystallogr.,Sect.E: Struct. Rep. Online 2008, 64, m173.
    CrossRef
  64. Ülkü, D.; Ercan, F.; Atakol, O.; Dinçer, F. N. Acta crystallogr., Sect.C:Cryst.Struct.Commun. 1997, 53, 1056−1057.
    CrossRef
  65. Carbonaro, L.; Isola, M.; Pegna, P.L.; Senatore, L.; Marchetti, F. Inorg.Chem. 1999, 38, 5519−5525.
    CrossRef
  66. Reglinski, J.; Morris, S.; Stevenson, D. E. Polyhedron, 2002, 21, 2167−2174.
    CrossRef
  67. Naiya, S.; Wang, H.-S.; Drew, M. G. B.; Song, Y.; Ghosh, A. Dalton Trans. 2011, 40, 2744−2756.
    CrossRef
  68. Luo, F.; Zheng, J.; Kurmoo, M. Inorg. Chem. 2007, 46, 8448−8450.
    CrossRef
  69. O’Bryan, N. B.; Maier, T. O.; Paul, I. C.; Drago, R. S. J. Am. Chem. Soc. 1973,95, 6640−6645.
    CrossRef
  70. Gutierrez, A.; Perpinan, M. F.; Sanchez, A. E.; Torralba, M. C.; Torres, M. R. Inorg. Chim. Acta 2010, 363,1837−1842.
    CrossRef
  71. Oz, S.; Titis, J.; Nazir, H.; Atakol, O.; Boca, R.; Svoboda, I.; Fuess, H. Polyhedron 2013, 59,1−7.
    CrossRef
  72. Arici, C.; Ulku, D.; Atakol, O. Anal. Sci. 2002, 18,959−960.
    CrossRef
  73. Brewer, G. A.; Sinn, E. Inorg.Chim. Acta 1987, 134,13−14
    CrossRef
  74. Morgenstern-Badarau, I.; Laroque, D.; Bill, E.; Winkler, H.; Trautwein, A. X.; Robert, F.; Jeannin, Y. Inorg. Chem. 1991, 30,3180−3188.
    CrossRef
  75. Ruiz, R.; Lloret, F.; Julve, M.; Faus, J. Inorg. Chim. Acta 1993, 213,261−268.
    CrossRef
  76. Seth, P.; Das, L. K.; Drew, M. G. B.; Ghosh, A. Eur. J. Inorg. Chem. 2012, 2232−2242.
    CrossRef
  77. Biswas, S.; Naiya, S.; Gómez-García, C. J.; Ghosh, A. Dalton Trans. 2012, 41, 462−473.
    CrossRef
  78. Pointillart, F.; Bernot, K. Eur. J. Inorg. Chem. 2010, 952−964.
    CrossRef
  79. Gleizes, A.; Julve, M.; Kuzmina, N.; Alikhanyan, A.; Lloret, F.; Malkerova, I.; Sanz, J. L.; Senocq, F. Eur. J. Inorg. Chem. 1998,1169−1174.
    CrossRef
  80. Novitchi, G.; Shova, S.; Caneschi, A.; Costes, J.-P.; Gdaniec, M.; Stanica, N. Dalton Trans. 2004, 1194−1200.
    CrossRef
  81. Costes, J.-P.; Dahan, F.; Dupuis, A.; Laurent, J.-P. New J. Chem. 1998, 22,1525−1529.
    CrossRef
  82. Harrison, D. W.; Bunzli, J.-C. G.; Inorg. Chim. Acta 1985, 109,185−192.
    CrossRef
  83. Novitchi, G.; Shova, S.; Caneschi, A.; Costes, J.-P.; Gdaniec, M.; Stanica, N. Dalton Trans. 2004, 1194−1200.
    CrossRef
  84. Gao, T.; Sun, W.-B.; Yan, P.-F.; Li, G.-M.; Hou, G.-F Acta Cryst. Sec. E, Str. Rep. Online 2007, 63, m2201−m2202.
    CrossRef
  85. Costes, J.-P.; Dahan, F.; Dupuis, A.; Laurent, J.-P. New J.Chem. 1998,22,1525−1529.
    CrossRef
  86. Bencini, A.; Benelli, C.; Caneschi, A.; Carlin, R. L.; Dei, A.; Gatteschi, D. J. Am. Chem. Soc. 1985, 107,8128−8
    CrossRef

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

About The Author