ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039
     FacebookTwitterLinkedinMendeley

Reactions of MoCl5 and MoO2Cl2 with 4-Phenylimidazole-2-Thiol and 2-Thiazoline-2-Thiol

Deepika Rani1, Gursharan Singh2* and Seema Sharma3

1Research Scholar registered with Punjab Technical University, Kapurthala-INDIA.

2Department of Applied Chemistry,GianiZail Singh Campus College of Engineering and Technology, MRSPTU,Dabwali Road, Bathinda-151001-INDIA
.

3Department of Chemistry Maharaja Ranjit Singh Punjab Technical University'
Dabwali Road, Bathinda-151001-INDIA.

Corresponding Author E-mail: gursharans82@gmail.com

DOI : http://dx.doi.org/10.13005/ojc/360611

Article Publishing History
Article Received on : 15-10-2020
Article Accepted on :
Article Published : 30 Dec 2020
Article Metrics
ABSTRACT:

Reactions of MoCl5/MoO2Cl2 with 4-phenylimidazole-2-thiol/2-thiazoline-2-thiol in CH3CNsolvent in 1:1/1:2 molar ratios have been carried out at room temperature. Products obtained MoCl3(C9H7N2S)(CH3CN), [1];MoCl2(C9H7N2S)(CH3CN), [2]; Mo2OCl4(C9H8N2S)2, [3] and Mo4O2Cl12(C9H7N2S)4, [4]; MoO2Cl3(C3H5NS2)2, [5] and Mo2O4Cl3(C3H5NS2)2, [6] have been analyzed and characterizedby elemental analysis, FTIR, 1H NMR and LC-MS techniques. Compounds being moisture and air sensitive, these have been prepared in inert atmosphere using vacuum line and liquid nitrogen cooled traps. Fragments obtained in LC-MS spectra support the formulae derived.

KEYWORDS:

FTIR; 1H NMR and LC-MS fragments; MoCl5, MoO2Cl2; 4-Phenylimidazole-2-Thiol, 2-Thiazoline-2-Thiol

Download this article as: 

Copy the following to cite this article:

Rani D, Singh G, Sharma S. Reactions of MoCl5 and MoO2Cl2 with 4-Phenylimidazole-2-Thiol and 2-Thiazoline-2-Thiol. Orient J Chem 2020;36(6).


Copy the following to cite this URL:

Rani D, Singh G, Sharma S. Reactions of MoCl5 and MoO2Cl2 with 4-Phenylimidazole-2-Thiol and 2-Thiazoline-2-Thiol. Orient J Chem 2020;36(6). Available from: https://bit.ly/2J31D0D


Introduction

Reactions of MoCl5 and MoO2Cl2 with various ligands have been reported in the literature. Earlier, MoCl5 reactions with 1, 4-diaminobutane, potassium phthalimide, pyrazole, 2-mercaptopyridine-N-oxide sodium, imidazole, 2-methylpyridine, 3-methylpyridine, 4-methtylpyridine, succinimide, 2-thiazoline-2-thiol have been reported1, 3-4, 6-7 by the author. Reactions of MoO2Cl2with 1, 3-diaminopropane, 1, 4-diaminobutane, 1, 3-propandiol, imidazole, pyrazole, acetamide, succinimide, potassium phthalimide, 2-thiazoline-2-thiol have also been reported1-3, 6-7 by the author.

In the current paper, reactions of 4-phenylimidazole-2-thiol/2-thiazoline-2-thiol with MoCl5/MoO2Cl2 in CH3CN solvent at room temperature have been carried out to study addition, substitution, reduction, rearrangement or polymerization processes occurring.

1H NMR, FTIR of the compounds synthesized have been studied to determine the bonding of the ligands to Mo. Fragmentation pattern of the compounds observed in LC-MS mass spectra support molecular formulae derived.

Aim of Investigation

Heterocyclic thioamides have N and S-donor ligands which are known to form different types of coordination compounds. They are used in analysis and corrosion control. They are biologically active. N-methylimidazoline-2-thione and other thioamides are used as anti-thyroidal agents8. Heterocyclic compounds having imidazothiazole structural unit are biologically active9. They have the ability to inhibit or activate many enzymes and receptors10-13. They act as antitumor14-19, antimicrobial20-21, antidiabetic22, diuretic23, antihelmintic24 and fungicidal25 compounds.

 Molybdenum compounds containing 2-thiazoline-2-thiol have been prepared by the author2, 5-6. Metal complexes with sulphur containing ligands have many biochemical applications26-28.

Materials and Methods

MoO2Cl2, MoCl5 and 2-thiazoline-2-thiol were purchased from Sigma-Aldrich, USA and used as such.

Mo and Cl have been estimated gravimetrically by oxinate method29 and silver chloride method29,respectively. Other elements were analysed using Thermo Finnigan Elemental Analyzer. Perkin-Elmer 400 FTIR Spectrometer,in KBr disks was used to record spectra in the range 4000 – 400 cm-1.BruckerAvance-II 400 NMR in DMSO-d6 was used for obtaining 1H-NMR spectra. WATERS, Q-TOF Micromass LC-MS (UK) was used for LC-MS spectra in the range 0 – 1100 m/z. These facilities were availed at SAIF/CIL, Panjab University, Chandigarh (India).

Synthesis of Compounds [1] – [6]

Pressure stabilized dropping funnel having teflon stop-cock was connected to a 100 ml flask. For stirring, a magnetic bead was placed in the flask. Apparatus was connected to vacuum line and dried by heating. On cooling, apparatus was flushed with oxygen purged dry nitrogen gas. Known amount of MoO2Cl2 or MoCl5 was placed in the flask along with dry CH3CN solvent. 4-phethylimidazole-2-thiol or 2-thiazoline-2-thiol was placed in equimolar or 1:2 molar amount along with CH3CN solvent in dropping funnel. Solution from the dropping funnel was added to MoO2Cl2 or MoCl5 placed in bottom flask at room temperature with continuous stirring. Compounds thus prepared were filtered under reduced pressure through filtration unit. Compounds prepared have sensitivity to air and moisture. On exposure to air and moisture, their colour changes to blue. All procedures and work up have been done in vacuum line using oxygen purged under dry nitrogen gas. Moisture and oxygen were further removed using liquid nitrogen cooled traps.

Rearrangement and disproportionation have occurred during the reactions. F/R means filtrate/residue yielding the product.

Analytical Studies

Table 1: (Elemental Analysis)

Compounds

(Colour/Formula Mass)

% Observed (Theoretical)

Mo

Cl

C

H

N

S

MoCl3(C9H7N2S)(CH3CN), [1]

(Green/418.5)

23.76

(22.93)

24.76

(25.44)

30.22

(31.54)

03.01

(02.38)

09.41

(10.03)

7.31

(7.64)

MoCl2(C9H7N2S)(CH3CN), [2]

(Light blue/383.0)

25.35

(25.06)

17.73

(18.53)

33.66

(34.46)

02.91

(02.61)

10.08

(10.96)

9.21

(8.35)

Mo2OCl4(C9H8N2S)2, [3]

(Black/702.0)

28.03

(27.35)

21.00

(20.22)

29.99

(30.76)

02.61

(02.27)

07.32

(07.97)

8.35

(9.11)

Mo4O2Cl12(C9H7N2S)4, [4]

(Greyish blue/1546.0)

25.63

(24.83)

28.46

(27.55)

27.07

(27.94)

02.77

(01.81)

06.86

(07.24)

7.50

(8.27)

MoO2Cl3(C3H5NS2)2, [5]

(Dark brown/472.5)

21.16

(20.31)

22.58

(22.53)

14.56

(15.23)

02.08

(02.11)

05.62

(05.92)

26.99

(27.08)

Mo2O4Cl3(C3H5NS2)2, [6]

(Greenish blue/600.5)

32.56

(31.97)

17.40

(17.73)

11.32

(11.99)

02.28

(01.67)

04.60

(04.66)

20.47

(21.31)

Ftir Spectra

There is an increase of 145, 149, 150 & 148 cm-1 in υ(N-H) of 4-phenylimidazole-2-thiol30-32in [1], [2], [3] & [4], respectively (Table-2) showing the presence of N-H group. There is no absorption in the region 2550-2600 cm-1 of [1], [2], [3] & [4] corresponding to υ(S-H), conveying absence of S-H group.υ(C=S) are absent in these compounds. υ(C=S) is observed at a lower wave number than υ(C=O), because C=S bond is weaker and less polar than C=O bond.C=S absorptions are less intense than those of C=O group. Absorption at 762, 761, 762 & 762 cm-1 in [1], [2], [3] &[4], respectively is associated with υ(C-S). Presence of υ(C-S) may be due to formation of Mo-S bond.

Table 2: (Infrared Absorptions in cm−1)

Assignment

C9H7N2S

(4-Phenylimidazole-2-thiol)30-32

[1]

[2]

[3]

[4]

υ(N-H)

3129, 3248 s

3393.7 v. s.

3396.1 v. s.

3396.6 v. s.

3397.7 v. s.

υ(S-H)

υ(C=C), υ(C=N)

1558, 1500, 1465

1623.2 s, 1593.2 sh, 1457.2 m

1621.3 s,

1459.1 m

1619.8 s, 1597.3 sh,

1456.9 w

1621.7 s, 1598.2 sh,

1456.6 w

υ(C=S)

1261, 1109

—-

—-

—-

—-

υ(C-S)

780

762.4 s

761.7 s

762.9 s

762.2 s

υ(Mo-S)33

421

υterminal(Mo=O)34-36

981.3 s

981.7 s

Thiol-thionetautomerism is typical of imidazole-2-thiones32. There is a decrease in υ(Mo=O) which shows S→Mo coordination37 of 4-phenylimidazole-2-thiol in a direction trans to Mo=O bond. This shows that 4-phenylimidazole-2-thione reacted in a thiol form.

There is an increase of 285 &zero cm-1 in υ(N-H) of 2-thiazoline-2-thiol in [5] & [6], respectively (Table-3). The spectrum does not show absorption around 2710 cm-1 conveying S-H group is absent in [5] & [6]. Presence of υ(C=S) at 1308 & 1309 cm-1 in [5] & [6], respectively and further, absence of υ(C=N) indicate that S-H bond is missing in these compounds. Ligand is attached in thio-keto form in them. Bonding of ligand seems to be through S→Mo coordinate bond.

Absorption at 963 cm-1 in [5] correspondsto terminal υ(Mo=O)34-36. There is a decrease in υ(Mo=O) which shows coordination37 of 2-thiazoline-2-thiolto Mo through S atom in a direction trans to Mo=O bond. Bands at 983& 960 cm-1 in [6] indicate the presence of cis-MoO22+ core38.

Table 3: (Infrared Absorptions in cm−1)

Assignment

C3H5NS22-Thiazoline-2-thiol30-32

[5]

[6]

υ(N-H) asym.

3145

3429.7 vs

3145.0 s

υ(S-H)

2709

—-

—-

υ(C=N)

1518 s

—-

—-

υ(C=S)

1300 m

1308.4 s,

1309.8 sh,

υring(C-N)

1260 sh

1254.8 vw

1256.4 w

υsym.(C-N)

1218

1202.5 m

1208.6 m

υ(Mo-N)

—-

458.6 sh

460.1 sh

υ(Mo-S)

421

υterminal(Mo=O)34-36

—-

963.0 s

cis-MoO22+ core38 υ(Mo=O)

—-

984.0 sh, 959.0 vs

1H NMR Spectra

4-Phenylimidazole-2-thiol39, 40 has N-H peak at 13.00 ppm. Since-OH, -NH2, -SH are labile protons and spectrum is taken in some solvent, so they have no characteristic chemical shift. No N-H peak has been observed in [1], [2], [3] & [4] (Table-4). 4-Phenylimidazole-2-thiol has S-H peak at 12.15 ppm. No S-H peak has been observed in [1], [2], [3] & [4]. This indicates the absence of S-H group in [1], [2], [3] & [4]. There has been upfield shift of H-5 in all the four compounds. All the ring protons of phenyl group have also shown up field shift in all the four compounds. Presence of CH3CN in [1] &[2] has been inferred by the absorptions at 2.05 &1.98 ppm, respectively.

Table 4: (1H NMR absorptions in ppm)

Assignment

C9H7N2S(4-Phenylimidazole-2-thiol)

[1]

[2]

[3]

[4]

N-H

13.00

S-H

12.15

H-5

7.51

7.47

7.41

7.33

7.39

Phenyl H-2, H-6

8.13

7.90

7.86

7.76

7.77

Phenyl H-3, H-5

7.51

7.47

7.41

7.33

7.45

Phenyl H-4

7.41

CH3CN

2.05

1.98

N-H absorptions have not been observed in [5] & [6] (Table-5). Other protons have shown downfield shift in them showing S→Mo coordination.

Table 5: (1H NMR absorptions in ppm)

Assignment

C3H5NS2 2-Thiazoline-2-thiol41

 [5]

[6]

CH2 attached to N

3.33 (2H)

3.27

3.41

CH2 attached to S

3.56 (2H)

3.88

3.83

N-H

7.43 (1H)

S-H

LC-MS Mass Spectra42

Fragmentation pattern obtained below has been used to derive the formulae (Table-6, 7). m/z values have been given below of the fragments.

Table 6: (Fragmentation)

Click here to View table

Table 7: values have been given below of the fragments.

Comp.

Fragment

Calculated35

m/z

Recorded

m/z

Rel. abundance

[1]

[C9H8N2S]+

176.04

177.09

40%

[MoCl2(C9H7N2S)(CH3CN)]+

384.91

383.18

5%

[MoCl2(C6H5)(CH3CN)]+

285.90

286.13

30%

[MoCl(C6H5)(CH3CN)]+

250.93

252.14

10%

[MoCl2(C9H8N2)(CH3CN)]+

352.93

351.14

100%

[2]

[MoCl2(C9H8N2S)(CH3CN)]+

384.91

383.18

6%

[C9H8N2S]+

176.04

177.09

41%

[C9H8N2]+

144.06

145.12

7%

[MoCl2(C9H8N2)(CH3CN)]+

352.93

351.14

100%

[MoCl2(C6H5)(CH3CN)]+

285.90

286.13

7%

[3]

[C9H8N2S]+

176.04

177.02

28%

[Mo2OCl4]+

351.68

350.99

100%

[Mo2OCl4(C9H7N2S)]

526.71

525.01

40%

[Mo2OCl4(C9H7N2S)2]+

701.74

699.00

2%

[4]

[C9H8N2S]+

176.04

177.03

28%

[Mo2OCl4]+

351.68

351.02

78%

[Mo2OCl4(C9H7N2S)]

526.71

525.01

100%

[Mo2OCl4(C9H7N2S)2]+

701.74

699.06

40%

[Mo4O2Cl8(C9H7N2S)]+

878.39

873.12

3%

[Mo4O2Cl8(C9H7N2S)2]+

1053.42

1049.14

<1%

[Mo4O2Cl8(C9H7N2S)3]+

1228.46

1223.15

<1%

[Mo4O2Cl8(C9H7N2S)4]+

1403.48

1397.18

<1%

[5]

[MoO2Cl3(C3H4NS2)2]+

470.75

470.85

4%

[C3H5NS2]+

118.98

119.98

8%

[MoO2]+

129.89

129.03

28%

[MoO2S]+

161.86

161.01

8%

[C3H4NS2SNH4C3]+

203.98

204.95

100%

[C3H5NS2Cl2]+

188.92

188.99

44%

[6]

[MoO2Cl3(C3H4NS2)2]+

470.75

470.85

2%

[C3H5NS2]+

118.98

120.00

1%

[MoO2]+

129.89

129.05

25%

[MoO2S]+

161.86

161.01

20%

[C3H5NS2Cl2]+

188.92

189.00

86%

[C3H4NS2SNH4C3]+

203.98

204.97

100%

[MoO2Cl(C3H4NS2)2]+

400.82

399.06

3%

Conclusion

There is no absorption in the region 2550-2600 cm-1 of [1], [2], [3] & [4] corresponding to υ(S-H), showing absence of S-H group. υ(C=S) stretchings are absent in [1], [2], [3] & [4]. Absorptions at 762, 761, 762& 762 cm-1 in [1], [2], [3] & [4], respectively suggestpresence of υ(C-S) of Mo-S bonds. Presence of υ(C=S) at 1308& 1309 cm-1 in [5]& [6], respectively and further, absence of υ(C=N) in [5] & [6], respectively indicate that S-H bond is missing. Bonding of ligand seems to be through S→Mo coordinate bond.

No characteristic S-H chemical shift has been observed in all the six compounds, indicating that either C=S is present or Mo-S is present in these compounds. Presence of CH3CN in [1] & [2] has been inferred due to presence of 1H NMR peak of CH3CN in them.

LC-MS spectra support the presence of particular ligands in these compounds and their proposed formulae.

Acknowledgements

We acknowledge our thanks to SAIF/CIL, Panjab University, Chandigarh (India) for extending us the characterising facility for LC-MS, elemental analysis, 1H-NMR & FTIR. Our thanks are to Campus Director, GZS CCET, MRSPTU,Bathinda, Punjab (India) for their financial support to this project.

Conflict of Interest

It is declared that the authors have no conflict of interest.

References

  1. Singh, G.; Mangla, V.; Goyal, M.; Singla, K.; Rani, D., American International Journal of Research in Science, Technology, Engineering & Mathematics., 2014, 8(2), 131-136.
  2. Singh, G.; Mangla, V.; Goyal, M.; Singla, K.; Rani, D., American International Journal of Research in Science, Technology, Engineering & Mathematics., 2015,9(1), 25-33.
  3. Singh, G.; Mangla, V.; Goyal, M.; Singla, K.; Rani, D., American International Journal of Research in Science, Technology, Engineering & Mathematics., 2015,10(4), 299-308.
  4. Singh, G.; Mangla, V.; Goyal, M.; Singla, K.; Rani, D.; Rakesh, K., American International Journal of Research in Science, Technology, Engineering & Mathematics., 2015,11(2), 158-166.
  5. Singh, G.; Mangla, V.; Goyal, M.; Singla, K.; Rani, D., International Congress on Chemical, Biological and Environmental Sciences.,May 7-9, Kyoto (Japan)., 2015, 930-942.
  6. Singh, G.; Mangla, V.; Goyal, M.; Singla, K.; Rani, D.; Kumar, R., American International Journal of Research in Science, Technology, Engineering & Mathematics., 2016, 16(1), 56-64.
  7. Singh, G.; Kumar, R., American International Journal of Research in Science, Technology, Engineering & Mathematics., 2018, 22(1), 01-08.
  8. Owczarzak, A. M.; Kubicki, M., Acta Crystallographica, Section E., 2012, E68, o1686. doi:10.1107/S1600536812020090.
    CrossRef
  9. Al, R. K. A.; Abdel, A. H. A., Molecules., 2010, 15, 3775-3815.
    CrossRef
  10. Borhani, D. W.; Calderwood, D. J.; Frank, K. E. H.; Davis, M.; Josephsohn, N. S.; Skinner, B. S., WO Pat. 2008/063287, 2008.
  11. Fidanze, S. D.; Erickson, S. A.; Wang, G. T.; Mantei, R.; Clark, R. F.; Sorensen, B. K.; Bamaung, N. Y.; Kovar, P.; Johnson, E. F.; Swinger, K. K.; Stewart, K. D.; Zhang, Q.; Tucker, L. A.; Pappano, W. N.; Wilsbacher, J. L.; Wang, J., Sheppard, G. S.; Bell, R. L.; Davidsen, S. K.; Hubbard, R. D., Bioorg. Med. Chem. Lett., 2010, 20, 2452-2455.
    CrossRef
  12. Emmitte, K. A.; Wilson, B. J.; Baum, E. W.; Emerson, H. K.; Kuntz, K. W.; Nailor, K. E.; Salovich, J. M.; Smith, S. C.; Cheung, M.; Gerding, R. M.; Stevens, K. L.; Uehling, D. E.; Jr. Mook, R. A.; Moorthy, G. S.; Dickerson, S. H.; Hassell, A. M.; Leesnitzer, M. A.; Shewchuk, L. M.; Groy, A.; Rowand, J. L.; Anderson, K.; Atkins, C. L.; Yang, J.; Sabbatini, P.; Kumar, R.,Bioorg. Med. Chem. Lett., 2009, 19, 1004-1007.
    CrossRef
  13. Andreani, A.; Burnelli, S.; Granaiola, M.; Guardigli, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Rizzoli, M.; Varoli, L.; Roda, A.,Eur. J. Med. Chem., 2008, 43, 657-661.
    CrossRef
  14. Andreani, A.; Rambaldi, M.; Andreani, F.; Bossa, R.; Galatulas, I., Eur. J. Med. Chem.,1988, 23, 385-389.
    CrossRef
  15. Andreani, A.; Rambaldi, M.; Locatelli, A.; Bossa, R.; Fraccari, A.; Galatulas, I., Pharm. Acta Helv., 1993, 68, 21-24.
    CrossRef
  16. Andreani, A.; Bonazzi, D.; Rambaldi, M., Arch. Pharm., 1982, 315, 451-456.
    CrossRef
  17. Andreani, A.; Rambaldi, M. M.; Locatelli, A.; Bossa, R.; Fraccari, A.; Galatulas, I., J. Med. Chem.,1992, 35, 4634-4637.
    CrossRef
  18. Ding, H.; Chen, Z.; Zhang, C.; Xin, T.; Wang, Y.; Song, H.; Jiang, Y.; Chen, Y.; Xu, Y.; Tan, C.,Molecules., 2012, 17, 4703-4716.
    CrossRef
  19. Abdelwareth, S. A. O.; Al, D. A.; Al, M. M. A.; Adra, C. N.; Aboul, F. T.,Eur. J. Med. Chem., 2010, 45, 2689-2694.
    CrossRef
  20. Poorrajab, F.; Ardestani, S. K.; Emami, S.; Behrouzi F. M.; Shafiee, A.; Foroumadi, A.,Eur. J. Med. Chem., 2009, 44, 1758-1762.
    CrossRef
  21. Khalaj, A.; Nakhjiri, M.; Negahbani, A. S.; Samadizadeh, M.; Firoozpour, L.; Rajabalian, S.; Samadi, N.;Faramarzi, M. A.; Adipour, N.; Shafiee, A.; Foroumadi, A., Eur. J. Med. Chem., 2011, 46, 65-70.
    CrossRef
  22. Vu, C. B.; Bemis, J. E.; Disch, J. S.; Ng, P. Y.; Nunes, J. J.; Milne, J. C.; Carney, D. P.; Lynch, A. V.; Smith, J. J.; Lavu, S.; Lambert, P. D.; Gagne, D. J.; Jirousek, M. R.; Schenk, S.; Olefsky, J. M.; Perni, R. B., J. Med. Chem., 2009, 52, 1275-1283.
    CrossRef
  23. Andreani, A.; Rambaldi, M.; Mascellani, G.; Rugarli, P., Eur. J. Med. Chem. 1987, 22, 19-22.
    CrossRef
  24. Amarouch, H.; Loiseau, P. R.; Bacha, C.; Caujolle, R.; Payard, M.; Loiseau, P. M.; Bories, C.; Gayral, P., Eur. J. Med. Chem., 1987, 22, 463-466.
    CrossRef
  25. Gupta, G. D.; Jain, K. K.; Gupta, R. P.; Pujari, H. K.;Indian J. Chem., Sect. B:., Org. Chem. Incl. Med. Chem., 1983, 22, 268.
    CrossRef
  26. Kumaresan, K. L.; Lu, S.; Wen, Y.S.; Hwu, J. R., Organometallics, 1994, 13, 3170–3176.
    CrossRef
  27. Nagai, K.; Carter, B.J.; Xu, J.; Hecht, S. M.,J. Am. Chem. Soc., 1991, 113, 5099-5100.
    CrossRef
  28. Lobana, T.S.; Bhatia, P. K., J. Sci. Ind. Res., 1989, 48, 394-401.
  29. Vogel, A. I.,A text book of Quantitative Inorganic Analysis; John Wiley and Sons: New York, (Standard methods), 1963.
  30. Jolley, J.; Cross, W. I.; Pritchard, R. G.; McAuliffe,C. A.; Nolan, K. B., Inorganica Chimica Acta, 2001, 315, 36-43.
    CrossRef
  31. Kahn, E. S.; Rheingold, A. L.; Shupack, S. I., J. Crystallographic and Spectroscopic Research, 1993, 23(9), 697-710.
    CrossRef
  32. Trzhtsinskaya, B. V.; Abramova, N. D.,Sulphur Reports, 1991, 10(4), 389-430.
    CrossRef
  33. Liang Y. Q.; Zhao W. Y.; XU W. Q., Acta Chimica Sinica, 1986, 1126, 42-47.
  34. Barraclough, C. G.; Kew, D. J., Australian J. Chem., 1970, 23, 2387-2396.
    CrossRef
  35. Ward, B. G.; Stafford, F. E., Inorg. Chem.,1968, 7, 2569.
    CrossRef
  36. Bodo, H. H.; Regina., Z. Chem., 1976, 16, 407.
    CrossRef
  37. Abramenko, V. L.; Sergienko, V. S., Russian J. Inorg. Chem., 2009, 54(13), 2031-2053.
    CrossRef
  38. Abramenko, V. L.; Sergienko,V. S.; Churakov, A. V., Russian J. Coord. Chem., 2000,26(12), 866-871.
    CrossRef
  39. Karpov, M. V.; Davidovich, P. B.; Orlova, D. D.; Belyaev, A. N.; Garabadzhiu, A. V., Russian Journal of General Chemistry., 2015, 85(1), 206–207.
    CrossRef
  40. http://www.molbase.com/en/hnmr_6857-34-7-moldata-838140.html#tabs.
  41. http://www.molbase.com/en/name-2-Thiazolidinethione.html
  42. http://www.sisweb.com/referenc/tools/exactmass.html.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

About The Author