ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039
     FacebookTwitterLinkedinMendeley

Calculation of ESR Spin- Spin Relaxation Times (1/T_2) Transition Metal Ion Complexes: A DFT Application

M. L. Sehgal1, K. N. Kauland Mehjbeen Javed3

1Fmr. Head, Department of Chemistry, D.A.V. College, Jalandhar-144008, India.

2Chemisrty Department, D. A.V. University, Jalandhar, India.

3Aquatic Toxicology Research Laboratory, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.

Corresponding Author E-mail: mehjabeenjaved200@gmail.com

DOI : http://dx.doi.org/10.13005/ojc/330115

Article Publishing History
Article Received on :
Article Accepted on :
Article Metrics
ABSTRACT:

Only a limited experimental ESR research had been carried out in this field because high values of spin orbit constants of transition metal ions which provide an important energy transfer mechanism would affect the values of ESR parameters (especially Aten) of their complexes. Therefore, theoretical predictions were useful. DFT implemented in ADF: 2012.01  was applied by giving a set of commands like Single Point, LDA, Default, Spin Orbit, ZORA, Unrestricted, None, Collinear, Nosym using TZP or TZ2P Basis sets in its ESR/EPR/EFG/ZFS Program after optimization of  each one of 141 complexes to obtain  their ESR parameters: g11, g22, g33, giso, a11, a22, a33, Aten. ESR Spin- Spin Relaxation Times (1/T_2)whose values, to the best of our knowledge, were never reported before were, then, calculated from the giso values of the complexes

KEYWORDS:

Spin-spin and Spin–lattice Relaxation; Saturation Effect; Line Width; DPPH

Download this article as: 

Copy the following to cite this article:

Sehgal M. L, Kaul K. N, Javed M. Calculation of ESR Spin- Spin Relaxation Times (1/T_2) Transition Metal Ion Complexes: A DFT Application. Orient J Chem 2017;33(1).


Copy the following to cite this URL:

Sehgal M. L, Kaul K. N, Javed M. Calculation of ESR Spin- Spin Relaxation Times (1/T_2) Transition Metal Ion Complexes: A DFT Application. Orient J Chem 2017;33(1). Available from: http://www.orientjchem.org/?p=29755


Introduction   

Magnetic resonance was associated with  a typical a problem not encountered in higher energy forms of spectral techniquesas  the two spin levels were nearly equally populated [1-3] as at 298K with value:N upper/N lower=0.9986 at 3000G. But even this slight excess population in the lower level would lead to energy absorption. In order to maintain a population excess in the lower level, electrons from upper level gave up energy to return to lower level (Maxwell–Boltzmann law).This energy releasing process was called spin relaxation process. The relaxation processes were two types: spin–lattice relaxation and spin–spin relaxation.

Spin-lattice relaxation[1-3]     

Spin–lattice implied the interaction between the species with unpaired electrons, called “spin system” and the surrounding molecules, known as “lattice”. The energy was dissipated within the lattice as vibrational, rotational or translational energy. The spin lattice relaxation characterized by a relaxation time T_1, was the time for the spin system to lose 1/eth of its excess energy. Spin-lattice rate constant was equal to 1/T_1. Rapid dissipation of energy (short T_1) was essential to maintain the population difference of the spin states. Slow spin-lattice relaxation, which frequently occurred in systems containing free radicals, especially at low temperatures, might cause saturation of the spin system which implied that the population difference of the upper and lower spin states approached zero and EPR signal would cease. Systems with a long T_1 were weakly coupled to the surroundings and thus would be easily saturated while those with shorter T_1 were more difficult to saturate. The effect of saturation was interpreted by a set of macroscopic equations proposed by Flex Bloch (1946) to calculate nuclear magnetization (M) as a function of relaxation times T_1 and T_2.

As spin-orbit coupling provided an important energy transfer mechanism, it was found that odd-electron species with light atoms (organic radicals) possessed long T_1 s while those with heavier atoms(transition metal ions) had shorter T_1 s.

Spin-spin relaxation [1-3] 

In Spin-spin relaxation (Cross relaxation), energy exchange takes place between electrons in a higher energy spin state and nearby electrons or magnetic nuclei in a lower energy state, without transferring to the lattice. Analogously, the spin–spin relaxation was characterized by spin-spin relaxation time T_2.

Ideally, both spin–spin and spin–lattice relaxations would contribute to the EPR signal  Resonance line width (ΔH) or  line width or half line width was the distance measured from the line’s center to the point at which absorption value had half of maximal absorption value in the center of resonance line.Itwas represented as:

ΔH∝1/T_1+1/T_2                              (a)

When T_1 >> T_2, ΔH depends, primarily, on spin–spin interactions.

The following points were helpful to compare the two relaxation times:

(a) Spin-Lattice (T_1) was known as longitudinal relaxation, or relaxation in the z-direction and Spin-Spin (T_2) was called transverse relaxation or relaxation in the x-y plane. Decreasing the spin-spin distance, which represented the spin concentration, T_1 would become very short i.e. less than 10−7 second. Spin-lattice relaxation has a larger influence on the line width than spin-spin relaxation

(b)In some cases, EPR lines were broadened beyond detection. When a spin system was weakly coupled to the lattice, i.e. the system possessed a long T_1; electrons had no time to return to the ground state. The population difference of two levels would tend to approach zero to decrease the intensity of EPR signal. This effect, called saturation, could be avoided by exposing the sample to low intensity microwave radiation.

Systems with shorter T_1 are more difficult to saturate.

(c)T_2 would represent the loss of phase coherence among nuclei.T_2 was less than or equal to T_­1 .If R1 =1/T_1, R2 = 1/T_2, R2 ≥ R1.

Short T_1 means NMR signal can be acquired faster.

Methodology

ESR technique was used to calculate ESR Spin-Spin Relaxation times[T_2] of the 1st, 2nd and 3rd transition metal ion complexes with the help of ADF 2012.01 by installing it on Windows XP.

ESR Parameters [4-6]

After optimization of complexes, the ADF software was run by using Single Point, LDA, Default, Spin Orbit, ZORA, Unrestricted, None, Collinear, Nosym using TZP or TZ2PBasis sets in ESR/EPR Programto obtain ESR parameters: g11, g22, g33, giso. Thegiso, values of metal ions (gMn+) were, then, used to calculate (1/T_2) values of complexes.

Results

Calculated values of ESR spin-spin relaxation times (T_2) of 141 complexes of the 1st,2ndand 3rdtransition series metal ions with their symmetry point groups were given in Table: 1.

Table 1: Calculation of ESR Spin-Spin Relaxation Time of 1st,2nd and 3rd Transition Series Complexes

S. No.

Complex

Point group

g M n+

g DPPH

ν DPPH

νM n+[ MHz ] [ 13]

T_2* 10– 12 sec[ 14]

1

[TiF4]1-

D4h

1.938444

2.0023

8388.255

8120.7424

9.7953

2

[TiCl4]1-

D4h

1.930215

-do-

-do-

8086.2686

9.8371

3

[TiBr4]1-

D4h

1.911538

-do-

-do-

8008.0249

9.93322

4

[TiI4]1-

D4h

1.877360

-do-

-do-

7864.8426

10.1140

5

[Ti(OH2)4]3+

C1

1.844705

-do-

-do-

7728.0407

10.2930

6

[TiF4]2-

Td

1.999110

-do-

-do-

8374.8911

9.4981

7

[TiCl4]2-

Td

1.933860

-do-

-do-

8101.5386

9.8186

8

[TiI4]2-

D4h

1.658980

-do-

-do-

6949.9812

11.4454

9

[Ti(OH2)4]2+

S4

1.956630

-do-

-do-

8196.9292

9.7043

10

[TiF6]3-

D6h

1.980815

-do-

-do-

8298.2477

9.5858

11

[TiCl6]3-

Oh

1.997868

-do-

-do-

8369.6880

9.5040

12

[TiBr6]3-

D6h

1.911538

-do-

-do-

8008.0249

9.9332

13

[TiI6]3-

Oh

2.003800

-do-

-do-

8394.5390

9.4759

14

[TiF6]4-

Oh

1.995846

-do-

-do-

8361.2172

9.5136

15

[TiCl6]4-

Oh

2.022666

-do-

-do-

8473.5745

9.3875

16

[TiBr6]4-

Oh

1.996820

-do-

-do-

8365.2976

9.5090

17

[TiI6]4-

Oh

1.979552

-do-

-do-

8292.9566

9.5919

18

[VF4]

D4h

1.914735

-do-

-do-

8021.4181

9.9166

19

[VCl4]

D4h

1.925441

-do-

-do-

8066.2688

9.8615

20

[VBr4]

D4h

1.931780

-do-

-do-

8092.8249

9.8291

21

[VI4]

D4h

1.882660

-do-

-do-

7887.0460

10.0856

22

[VF4]1-

Td

1.937673

-do-

-do-

8117.5125

9.7992

23

[VCl4]1-

Td

1.947051

-do-

-do-

8156.7998

9.7520

24

[V Br4]1-

Td

1.968615

-do-

-do-

8247.1381

9.6452

25

[V I4]1-

D4h

1.514479

-do-

-do-

6344.6217

12.5375

26

[VF6]4-

D12

1.999780

-do-

-do-

8377.6979

9.4949

27

[VCl6]4-

Oh

1.989060

-do-

-do-

8332.7886

9.5461

28

[VBr6]4-

Oh

2.001700

-do-

-do-

8385.7414

9.4858

29

[VI6]4-

Oh

2.036600

-do-

-do-

8531.9483

9.3232

30

[V(OH2)6]2+

C1

1.985757

-do-

-do-

8318.9512

9.5620

31

[CrF6]3-

Oh

1.983129

-do-

-do-

8307.9417

9.5746

32

[CrCl6]3-

Oh

1.992457

-do-

-do-

8347.0196

9.5298

33

[CrBr6]3-

Oh

2.022007

-do-

-do-

8470.8137

9.3905

34

[CrI6]3-

Oh

2.054592

-do-

-do-

8607.3224

9.2416

35

[Cr(CN)6]3-

Oh

1.997817

-do-

-do-

8358.8209

9.5163

36

[Cr(NH3)6]3+

D6

1.995274

-do-

-do-

8358.8209

9.5163

37

[CoF4]2-

Td

2.155870

-do-

-do-

9031.6073

8.8075

38

[CoCl4]2-

Td

2.156391

-do-

-do-

9033.7900

8.8053

39

[CoBr4]2-

Td

2. 175937

-do-

-do-

9115.6742

10.9701

40

[CoI4]2-

Td

2.199261

-do-

-do-

9213.3856

8.6337

41

[Co(NCS)4]2-

D2d

2.125062

-do-

-do-

8902.5430

8.9351

42

[Co(OH2)4]2+

C1

2.118590

-do-

-do-

8875.4298

8.9624

43

[CoF6]4-

Dµh

2.203720

-do-

-do-

9231.7851

8.6164

44

[CoCl6]4-

D6h

2.072360

-do-

-do-

8681.7580

9.1624

45

[NiF6]4-

Oh

2.119700

-do-

-do-

8880.0800

8.9577

46

[NiCl6]4-

Oh

2.097238

-do-

-do-

8785.9797

9.0537

47

[NiBr6]4-

Oh

2.091462

-do-

-do-

8761.7822

9.0787

48

[NiI6]4-

Oh

2.078646

-do-

-do-

8708.0920

9.1347

49

[Ni(OH2)6]2+

C2

2.083166

-do-

-do-

8727.0277

9.1148

50

[Ni(NH3)6]2+

D6h

2.053778

-do-

-do-

8603.9123

9.2453

51

[Ni(CH3NH2)6]2+

C1

2.049893

-do-

-do-

8587.6368

9.2628

52

[Ni(NH3)4(NCS)2]

C1

2.058390

-do-

-do-

8623.2334

9.2246

53

[NiCl4]2-

Td

2.266900

-do-

-do-

9496.7464

8.3761

54

[NiBr4]2-

Td

2.041699

-do-

-do-

8553.3096

9.2996

55

[NiI4]2-

Td

2.086793

-do-

-do-

8742.2609

9.099

56

[Ni(NCO)4]2-

D2d

2.171650

-do-

-do-

9097.7146

8.7435

57

[CuF4]-2

D4h

2.090142

-do-

-do-

8756.252

9.0844

58

[CuCl4]-2

D4h

2.052880

-do-

-do-

8600.150

9.2493

59

[CuBr4]-2

D4h

2.063943

-do-

-do-

8646.497

9.1997

60

[CuI  4]-2

D4h

2.055866

-do-

-do-

8612.660

9.2359

61

[Cu(gly)2]

C2

2.07501

-do-

-do-

8692.860

9.1507

62

Cu(edta)] 4-

C2

2.086651

-do-

-do-

8741.627

9.0996

63

[Cu(en)2]2+

C1

2.05848

-do-

-do-

8623.610

9.2241

64

[Cu(teta)]2+

C1

2.05301

-do-

-do-

8600.695

9.2487

65

[Cu(tepa)]2+

C1

2.23504

-do-

-do-

9363.275

8.4955

66

Cu(peha)] 2+

C1

2.046089

-do-

-do-

8571.701

9.2800

67

[Cu(deta)F2]

Cs

2.08732

-do-

-do-

8744.430

9.0977

68

[Cu(deta)Cl2]

Cs

2.08709

-do-

-do-

8743.467

9.0977

69

[Cu(deta)Br2]

Cs

2.12923

-do-

-do-

8920.004

8.9176

70

[Cu(deta)I2]

Cs

2.10717

-do-

-do-

8827.588

9.0110

71

Cu(deta)(NCS)2

Cs

2.00729

-do-

-do-

8409.160

9.4594

72

[Cu(tpy)F2]

C2v

2.07546

-do-

-do-

8694.745

9.1487

73

[Cu(tpy)Cl2]

C2v

2.06772

-do-

-do-

8662.320

9.1829

74

[Cu(tpy)Br2

C2v

2.11244

-do-

-do-

8849.656

8.8985

75

[Cu(tpy)I2]

C1

2.06119

-do-

-do-

8634.963

9.2120

76

[Cu(tpy)(NCS)2]

Cs

2.00552

-do-

-do-

8401.745

9.4625

77

[Bipy2 Ti] 3+

D2d

1.992097

-do-

-do-

8345.5115

9.5315

78

[Bipy2 V] 3+

-do-

1.961116

-do-

-do-

8215.7225

9.6821

79

[Bipy2 V] 4+

-do-

1.950899

-do-

-do-

8172.9203

9.7338

80

[Bipy2 Mn]2+

-do-

2.001587

-do-

-do-

8385.2680

9.4863

81

[Bipy2 Co]2+

-do-

2.143333

-do-

-do-

8979.0859

8.8590

82

[Bipy2 Ni]2+

-do-

2.118079

-do-

-do-

8873.2891

8.9646

83

[Bipy2 Cu]2+

-do-

2.261892

-do-

-do-

9475.7663

8.3946

84

[Phen2 Ti]3+

-do-

1.985933

-do-

-do-

8319.6886

9.5611

85

[Phen2 V]3+

-do-

1.961116

-do-

-do-

8215.7225

9.6821

86

[Phen2 Cr]3+

-do-

1.989331

-do-

-do-

8333.9238

9.5447

87

[Phen2 Mn]2+

-do-

2.00177

-do-

-do-

8386.0347

9.4855

88

[Phen2 Co]2+

-do-

2.083097

-do-

-do-

8726.7387

9.1151

89

[Phen2 Ni]2+

-do-

2.100 81

-do-

-do-

8800.9439

9.0383

90

[Phen2 Cu]2+

-do-

2.051877

-do-

-do-

8595.9484

9.2538

91

[Bipy3 V]2+

D3

1.992534

-do-

-do-

8347.3422

9.5294

92

[Bipy3 Cr]3+

-do-

1.994097

-do-

-do-

8353.8900

9.5220

93

[Bipy3 Ni[2+

-do-

2.049848

-do-

-do-

8587.4483

9.2630

94

[Phen3 V]2+

-do-

1.995046

-do-

-do-

8357.8657

9.5174

95

[Phen3Cr]3+

-do-

1.99303

-do-

-do-

8349.4200

9.5271

96

[ZrF6]3-

D6h

1.978506

2.00232

8388.255

8288.5746

9.597

97

[ZrCl6]3-

D3d

1.78472

-do-

-do-

7476.7450

10.639

98

[ZrBr6]3-

D6h

1.905875

-do-

-do-

7984.3008

9.963

99

[Hf F6]3-

D6h

1.935841

-do-

-do-

8109.8377

9.809

100

[Hf Cl6]3-

Oh

1.638886

-do-

-do-

6865.8012

11.586

101

[HfBr6]3-

Oh

1.687085

-do-

-do-

7067.7217

11.255

102

Hf(NH3)6]3+

D12

1.939677

-do-

-do-

8125.9079

9.789

103

[NbF6]2-

D3d

1.939395

-do-

-do-

8124.7265

9.791

104

[NbCl6]2-

D3h

1.966684

-do-

-do-

8239.0485

9.655

105

[NbI6]2-

C2v

2.08641

-do-

-do-

8740.6178

9.1007

106

Nb (NCS)6]2-

C2

1.99901

-do-

-do-

8374.4722

9.499

107

Nb(NH3)6]4+

D12

1.891714

-do-

-do-

7924.9760

10.038

108

[TaCl6]2-

D3h

1.682027

-do-

-do-

7046.5322

11.289

109

[TaBr6]2-

Oh

1.69233

-do-

-do-

7089.6995

11.220

110

[MoF6]3 –

Oh

1.958172

-do-

-do-

8203.3891

9.697

111

[MoCl6]3-

Oh

1.984449

-do-

-do-

8313.4716

9.569

112

[MoBr6]3-

(Oh

2.014495

-do-

-do-

8439.3436

9.426

113

Mo(NCS)6]3-

Oh

1.977407

-do-

-do-

8285.3685

9.601

114

[Mo(OH2)6]3+

C1

1.976455

-do-

-do-

8279.9823

9.607

115

[W F6 ]-3

Oh

1.80193

-do-

-do-

7548.8430

10.538

116

[WCl6]-3

Oh

1.868252

-do-

-do-

7826.6864

10.164

117

[W Br6] -3

Oh

1.893263

-do-

-do-

7931.4652

10.029

118

[W(OH2)6]+3

C1

1.859795

-do-

-do-

7791.2574

10.210

119

[W(NH3)6] +3

C1

1.925022

-do-

-do-

8064.5135

9.864

120

[TcCl6]4-

D6h

2.080509

-do-

-do-

8715.8967

9.127

121

[TcBr6]4-

D6h

1.986792

-do-

-do-

8323.2872

9.557

122

[Tc(NCS)6]4-

(C2

1.933744

-do-

-do-

8101.0527

9.819

123

[Tc(NH3)6]2+

D6

2.968741

-do-

-do-

12436.9758

6.396

124

[ReCl6]4-

Oh

2.346133

-do-

-do-

9828.6780

8.093

125

[ReBr6]4-

Oh

2.39061

-do-

-do-

10015.0059

7.927

126

Re(NH3)6]2+

D6

1.76930

-do-

-do-

7412.1458

10.732

127

[RuF6]3-

Oh

2.818343

-do-

-do-

11806.9119

6.737

128

[RuCl6]2-

Oh

2.853948

-do-

-do-

11956.0723

6.653

129

[RuBr6]2-

Oh

2.742377

-do-

-do-

11488.6668

6.924

130

[OsF6]3-

Oh

2.110344

-do-

-do-

8840.8848

8.999

131

[OsCl6]3-

D6h

2.008006

-do-

-do-

8412.1592

9.456

132

[Os Br6]3-

Oh

2.170049

-do-

-do-

9091.0075

8.750

133

[Os(NH3)6]3 +

D12

2.126494

-do-

-do-

8908.5421

8.929

134

[RhF6]2-

Oh

2.327833

-do-

-do-

9752.0136

8.157

135

[RhCl6]2-

Oh

2.233967

-do-

-do-

9358.7800

8.500

136

[RhBr6]2-

Oh

2.1426

-do-

-do-

8976.0152

8.862

137

[Rh(NH3)6]4+

D6

2.30505

-do-

-do-

9656.5685

8.238

138

[IrF6]2-

Oh

1.960903

-do-

-do-

8214.8301

9.683

139

[IrCl6]2-

Oh

1.938232

-do-

-do-

8119.8543

9.797

140

[IrBr6]2-

Oh

1.92585

-do-

-do-

8067.9823

9.860

141

[Ir(NH3)6]4+

D12

2.259355

-do-

-do-

9465.1380

9.397

Discussion

The discussion was divided into two parts

ESR Spin-spin relaxation time (T_2) was calculated as follows:

(a) As was known from relation (a) line width of a peak would depend both on Spin–lattice relaxation time: T_1 and Spin–spin relaxation time: T_2

ΔΗ~ (1/T_1) + (1/T_2)                                  (1)

But when spin-spin relaxation time [T_2] was very fast [‹‹10^–7 s], then electrons would remain in the upper state for an infinitesimally small time to cause broadening. In such a case, T_1 was neglected to represent ΔΗ as:

ΔΗ ≈ (1/T_2)                                                (2)

(b) The life time of a given spin state would influence the spectral line width via Heisenberg’s Uncertainty Principle as follows [7]:

∆E *∆t ≥ h/ 4π                                                (3)

h*∆ν *∆t ≥ h/ 4π                                              (4)

∆t ≥ 1/ 4π*∆ν                                                    (5)

Putting ∆t=T_2 and applying (2), it would become:

∆t=T_2 =1/ [ΔΗ]                                             (6)

Then from (5):

T_2 ≥ 1/ 4π*∆ν                                                   (7)

(c)ESR spectrum was scanned by using a constant frequency oscillator and changing the field (H0). Also for 8388.255 MHz(8388.255*10 6 Hz) in a 0.30T, the g value of the standard substance DPPH (2, 2-diphenyl-1-picrylhydrazyl) was reported to be: gDPPH =2.0023.

(d)Using the basic ESR relation as:

E = g * β*Ho                                              (8)

For DPPH, the above relation was represented as:

E DPPH=h. νDPPH = gDPPH.* Β * Ho                                                 (9)

For a metal ion (M n+) it, would, analogously, become:

EM=h* ν M n+ = g M n+ * β* Ho                                                       (10)

g M n+  / g DPPH    =  ν M n+ / ν DPPH                                    (11)

ν M n+   = g M n+  * νDPPH  / gDPPH                                                     (12)

Putting gDPPH =2.00232 and νDPPH = 8388.255*106 cm-1(Hz)

ν M n+(Hz)= g M n+*8388.255* 106 /2.0023                                     (13)

(1 cm-1=Hz)

On replacing ∆ v by ν M n+in (7) and putting its value in (13), ESR spin-spin relaxation time would become(sec-1):

T_2 ≈ 1.8987723151* 10-11 / g M n+                                                     (14)

ESR spin-spin relaxation times (T_2) of 141 complexes were calculated in Table: 1.

Conclusion

As expected, the spin- spin relaxation times of all the 141 complexes fall in picoseconds range.

References

  1. Abragam, A.; Bleaney, B.Electron Paramagnetic Resonance of Transition Ions, Dover Publishing; 1986.
  2. Schweiger, A.; Jeschke, G. Principles of Pulse  Electron Paramagnetic Resonance,” Oxford University Press, 2001.
  3. Weil, J. A.; Bolton, J. R. Electron Paramagnetic Resonance Spectroscopy: Elementary Theory and Applications, 2nd Edition. Wiley-Interscience. 2007.
  4. Singh, H.; Bhardwaj, A.K.; Sehgal,M.L.; Susheel,K. M. Int. J. Current Res. Rev.20135, 71-88.
  5. Singh, H.; Bhardwaj, A.K.; Sehgal,M.L.; Susheel, K. M. Int. J. Current Res. Rev.20124,12-28.
  6. Singh, H.; Bhardwaj, A.K.; Sehgal,M.L.; Susheel, K. M. Int. J. Current Res. Rev.20135, 13-31.
  7. Drago, R. S. Physical methods in Chemistry. 2nd ed.; pp 227; Saunders College Publishers1977.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.