Nano particles@Calix arenas via aqueous solution
Sahar Dehghani
Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran. Corresponding author Email: sahardehghani27@yahoo.com
DOI : http://dx.doi.org/10.13005/ojc/320224
Article Received on :
Article Accepted on :
Article Published : 10 May 2016
The electronic structure and magnetic properties of Al2O3, GaN and Fe3O4@ Calix (8) COOH have been studied using ONIOM and DFT methods. The studies focus on how to improve the adsorption of some nano particles solution aqueous for achieving good magnetic and functionalized potential performances. The results revealed that the Fe3O4@ Calix (8) COOH and some of its derivations exhibited better thermodynamic stability. Furthermore, the particle size and magnetic property of the GaN@ Calix (8) COOH nano particles can be controlled by the aqueous. The electrical properties such as NMR Shielding, electron densities, energy densities, potential energy densities, ELF, LOL, ellipticity of electron density, eta index and ECP for nano particles@ Calix (8)COOH have been calculated.
KEYWORDS:super paramagnetic nano particle; QM/MM simulation; Calix (n)
Download this article as:Copy the following to cite this article: Dehghani S. Nano particles @ Calix arenas via aqueous solution. Orient J Chem 2016;32(2) |
Copy the following to cite this URL: Dehghani S. Nano particles @ Calix arenas via aqueous solution. Orient J Chem 2016;32(2). Available from: http://www.orientjchem.org/?p=15979 |
Introduction
What makes GaN popular is not only it is more robust but it can emit in the short wave-length part of the visible spectrum. For example, there are now GaN-based high-efficiency blue and green light-emitting diodes [1] And just when researchers thought things could not get better for GaN, a whole new field of research has opened up in the form of GaN nanotubes [2]. These nanotubes were synthesized by an” epitaxial casting” strategy by the research group of Peidong Yang at Lawrence Berkeley National Lab oratory. ZnO nanowires, grown on sapphire wafers, were used as templates for epitaxial overgrowth of thin GaN layers in a chemical vapor
Deposition (CVD) system. The result of electron diffraction measurements showed that the nanotubes obtained in this way are single-crystal, and in this respect they are fundamentally different from theoretically simulated GaN nanotubes [3] with the conventional tubular
forms of carb on atoms [4].
Table 1: All Electron Densities Of Non-Bonded Interactions For Al2O3@ Calix [8]COOH
Atom(number) | Density of all electron( | Density of alpha( | Density of Beta( | Spin Density |
Al(1) | 0.18 | 0.09 | 0.09 | 0.0 |
Al(2) | 0.18 | 0.09 | 0.09 | 0.0 |
On the other hand, most of the applications require magnetic particles to disperse in a non-magnetic matrix. The matrixes play an important role in determining physical properties of the composite nanoparticle in addition to providing a means of particle dispersion [5].
Fe3O4 is an electrical conductor with conductivity significantly higher than Fe2O3, and this is ascribed to electron exchange between the FeII and FeIII centers [8-11].
Fe3O4 is ferromagnetic with a curie temperature of 858 K and The ferromagnetism of Fe3O4 arises because the electron spins of the FeII and FeIII ions in the octahedral sites are coupled and the spins of the FeIII ions in the tetrahedral sites are coupled but anti-parallel to the former[4-7].
Table 2: All Electron Energies of non-bonded interactions for Fe3O4@ Calix [8]COOH
Atom(number) | Lagrangian kinetic [G(r)]energy( | Hamiltonian kinetic [K(r)]energy( |
Fe(1) | 0.34 | 0.41 |
Fe(2) | 0.36 | 0.52 |
Fe(3) | 0.32 | 0.41 |
Nano-Magnetites have shown great potential applications in the field of in vitro and in vivo biomedicine, including cellular therapy in cell labeling, separation and purification, target-drug delivery, and hyperthermia treatment of cancers.
Magnetic nanoparticles have attracted much interest not only in the field of magnetic recording but also in the areas of medical field of magnetic sensing. Especially, nanoparticles of iron oxide are reported to be applicable as a material for use in drug delivery systems, magnetic resonance imaging, and cancer therapy [5−8].
Table 3: Laplacian, ELF, LOL and Local information entropy of non-bonded interactions for Fe3O4@ Calix [8]COOH
Atom(number) | Laplacian of electron density( | Electron localization function (ELF) ( | Local information entropy( |
Fe(1) | -0.12 | 0.47 | 0.33 |
Fe(2) | -0.41 | 0.21 | 0.41 |
Fe(3) | -0.38 | 0.34 | 0.12 |
Fe3O4 is used as a catalyst in the Haber process and in the water gas shift reaction [12,13].
The latter uses an HTS (high temperature shift catalyst) of iron oxide stabilized by chromium oxide [11, 12]. This iron-chrome catalyst is reduced at reactor start up to generate Fe3O4 from α-Fe2O3 and Cr2O3 to CrO3 [13].
In this work the Al2O3, GaN and Fe3O4@ Calix (8) COOH have been investigated and the catalysis’s properties of these nanoparticles have been studied
The data have been compared with the those nanoparticles @ CWCNNTs and BNNTs
Carbon nanotube (CNT) is a representative nano-material. CNT is a cylindrically shaped carbon material with a nano-metric-level diameter [11-38].Its structure, which is in the form of a hexagonal mesh, resembles a graphite sheet and it carries a carbon atom located on the vertex of each mesh. The sheet has rolled and its two edges have connected seamlessly [39-45].
Table 4: Average local ionization energy, RDG and ESP of non-bonded interactions for GaN@ Calix [8]
Atom(number) | Reduced density gradient(RDG)( | Average local ionization energy | ESP from electron charge ( |
Ga(1) | 0.30 | 0.31 | -0.21 |
N(2) | 0.34 |
0.33 |
-0.51 |
Although it is a commonplace material using in pencil leads, its unique structure causes it to present characteristics that had not found with any other materials. CNT can be classified into single-wall CNT, double-wall CNT and multi-wall CNT according to the number of layers of the rolled graphite [46, 70].
The type attracting most attention is the single-wall CNT, which has a diameter deserving the name of “nanotube” of 0.4 to 2 nanometers. The length is usually in the order of microns, but single-wall CNT with a length in the order of centimeters has recently released.
The length is usually in the order of microns, but single-wall CNT with a length about centimeters have recently released. The extremities of the CNT have usually closed with lids of the graphite sheet [70-85].
CNT can be classified into single-wall CNT, double-wall CNT and multi-wall CNT according to the number of layers of the rolled graphite. The type attracting most attention is the single-wall CNT, which has a diameter deserving the name of “nanotube” of 0.4 to 2 nanometers [51-69].
The lids consist of hexagonal crystalline structures (six-membered ring structures) and a total of six pentagonal structures (five-membered ring structures) placed here and there in the hexagonal structure [86-99]. The first report by Iijima was on the multi wall form, coaxial carbon cylinders with a few tens of nanometers in outer diameter. Two years later single walled nanotubes were reported [80-100]. SWBNNTs have considered as the leading candidate for nano-device applications because of their one-dimensional electronic bond structure, molecular size, and biocompatibility, controllable property of conducting electrical current and reversible response to biological reagents hence SWBNNTs make possible bonding to polymers and biological systems such as DNA and carbohydrates [100-133]. 
Computational Details
Part of the systems including GaN, Al2O3 and Fe3O4@ Calix (8)COOH, and @ SWBNNNTs and SWCNTs have been modeled with ONIOM method and the calculations are carried out with the Molecular Mechanics methods. In this investigation, differences in force field are illustrated by comparing the calculated energy with CHARMM, AMBER and OPLS force fields. Furthermore, a Hyper Chem professional release 7.01 programs is used for the additional calculations.
For non-covalent interactions between nano particles and Calix (8)COOH , the B3LYP method is unable to describe van der Waals by medium-range interactions. Therefore, the ONIOM methods including 3 levels of 1-high calculation (H), 2-medium calculation (M), and 3-low calculation (L) have been performed in our study for calculating the non-bonded interactions between nanoparticles and Calix (8)COOH.
Table 5: Lambada2, Wave function value, Ellipticity of electron density and Eta index of non-bonded interactions for Al2O3@ Calix [8]COOH
Atom(number) | Wave function value | Ellipticity of electron density |
Al(1) | 0.49 | 0.13 |
Al(2) | 0.57 | 0.23 |
O(3) | 0.23 | 0.28 |
The ab-initio and DFT methods are used for the model system of the ONIOM layers and the semi empirical methods of pm6 (including pseudo=lanl2) and Pm3MM are used for the medium and low layers, respectively.
B3LYP and the most other popular and widely used functional are insufficient to illustrate the exchange and correlation energy for distant non-bonded medium-range systems correctly. Moreover, some recent studies have shown that inaccuracy for the medium-range exchange energies leads to large systematic errors in the prediction of molecular properties.
Table 6: All Electron Densities of non-bonded interactions forAl2O3(6, 6)SWBNNTs
Atom(number) | Density of all electron( | Density of alpha( | Density of Beta( | Spin Density |
AL(1) | 0.23 | 0.25 | 0.16 | 0.0 |
Al(2) | 0.35 | 0.12 | 0.15 | 0.0 |
Table 7: The properties calculated data for Calix[8,8]COOH Click here to View table |
Geometry optimizations and electronic structure calculations have been carried out using the m06 (DFT) functional. This approach is based on an iterative solution of the Kohn-Sham equation of the density functional theory in a plane-wave set with the projector-augmented wave pseudo-potentials. The Perdew-Burke-Ernzerh of (PBE) exchange-correlation (XC) functional of the generalized gradient approximation (GGA) is also used. The optimizations of the lattice constants and the atomic coordinates are made by the minimization of the total energy.
Figure 1: Optimized Calix [8] COOH including Fe3, O4, GaN and Al2O3 nanoparticles with DFT methods Click here to View figure |
The charge transfer and electrostatic potential-derived charge were also calculated using the Merz-Kollman-Singh chelp or chelpG the charge calculation methods based on molecular electrostatic potential (MESP) fitting are not well-suited for treating larger systems whereas some of the innermost atoms are located far away from the points at which the MESP is computed. In such a condition, variations of the innermost atomic charges will not head towards a significant change of the MESP outside of the molecule, meaning that the accurate values for the innermost atomic charges are not well-determined by MESP outside the molecule . The representative atomic charges for molecules should be computed as average values over several molecular conformations.
Figure 2: The Calix [8,8]COOH Situations Versus Axis Click here to View figure |
Figure 3: Shaded map including projection for calix [8]COOH Click here to View figure |
A detailed overview of the effects of the basis set and the Hamiltonian on the charge distribution can be found in references . The charge density profiles in this study has been extracted from first-principles calculation through an averaging process as described in reference [122-124]. The interaction energy for capacitor was calculated in all items according to the equation as follows:
Where the “ΔEs ” is the stability energy.
The electron density, electron spin density, electron localization function (ELF), total electrostatic potential (ESP), value of orbital wave-function, electrostatic potential from nuclear atomic charges and localized orbital locator (LOL) which has been defined by Becke & Tsirelson, as well as the exchange-correlation density, correlation hole and correlation factor, and the average local ionization energy using the Multifunctional Wave-function analyzer have also been calculated in this study [122-124]. The contour line map was also drawn using the Multi wfn software [122, 124]. The solid lines indicate positive regions, while the dash lines indicate negative regions. The contour line corresponding to VdW surface which is defined by R. F. W Bader is plotted in this study. This is specifically useful to analyze distribution of electrostatic potential on VdW surface.
Figure 4: Relief map for Calix [8]COOH Click here to View figure |
Theoretical Background
electron density
The electron density has been defined as p(r) = ηi|Φi(r)|2= Σiηi|ΣC∫xi(r)|2(2). Where x is basis function, is occupation number of orbital (i), Φ is orbital wave function, and C is coefficient matrix. Atomic unit for electron density can be explicitly written as:
Locally depleted and locally concentrated are the positive and negative value of these functions, respectively. The relationships between and valence shell electron pair repulsion or VSEPR model, electron localization, chemical bond type, and chemical reactivity have been investigated by Bader [133].
The kinetic energy density is not uniquely defined, since the expected value of kinetic energy operator <Φ|-(1/2)ν2|Φ> can be recovered by integrating kinetic energy density from alternative definitions. One of commonly used definition is:
Lagrangian kinetic energy density, “G(r)” is also known as positive definite kinetic energy density.
K(r) and G(r) are directly related by Laplacian of electron density
Becke and Edgecombe noted that spherically averaged like spin conditional pair probability has direct correlation with the Fermi hole and then suggested electron localization function (ELF)
Savin et al. have investigated the ELF in the view point of kinetic energy, [134] which makes ELF also meaningful for Kohn-Sham DFT wave-function or even post-HF wave-function. They indicated that D(r) reveals the excess kinetic energy density caused by Pauli repulsion, while D0(r) can be considered as Thomas-Fermi kinetic energy density [135].
Localized orbital locator (LOL) is another function for locating high localization regions likewise ELF, defined by Schmider and Becke in the paper [136]. LOL(r) = t(r)/1+t(r) (13)
for spin-polarized system and close-shell system are defined in the same way as in ELF [137].
Result and discussion: functionalized
This study mainly focuses on the magnetic properties of nanoparticles in a non-bonded system with Calix (8) COOH and (n, n) SWCNTs core-shells. The non-bonded interaction is shown in figs1-7. As it is indicated in tables 1-7, the electrical properties can be obtained from changes in the non-bonded interactions. Electron densities, energy densities, Potential energy densities, ELF, LOL, and Ellipticity of electron density, eta index and ECP for nanoparticles @ Calix (8)COOH and nanoparticles @ SWCNTs were calculated of each simulation (Tables 1-7).
The largest electron localization is located on Al2O3 where the electron motion is more likely to be confined within that region. If electrons are completely localized in the GaN, they can be distinguished from the ones outside. As shown in tables 1-8 the large ELF is close to the Al2O3 atoms. The regions with large electron localization need to have large magnitudes of Fermi-hole integration which would lead the nanoparticles towards superparamagnetic. The fermi hole is a six-dimension function and as a result, it is difficult to be studied visually. Based on equations 12, 13 and 14, Becke and Edgecombe noted that the Fermi hole is a spherical average of the spin which is in good agreement with our results in tables and Figs.
Figure 5: Color and contour map for the Calix[8]COOH Click here to View figure |
ELF indicates that it is actually a relative localization and must be accounted within the range of [0, 1]. A large ELF value corresponds to largely localized electrons which indicate that a covalent bond, a lone pair or inner shells of the atom is involved. According to equation 16, LOL can be interpreted similar to ELF in terms of kinetic energy, though; LOL can also be interpreted in terms of localized orbitals. Small (large) LOL value usually appears in boundary (inner) region of localized orbitals due to the large (small) gradient of orbital wave-function in this area. The value range of LOL is identical to ELF, namely [0, 1].
Figure 6:Density of states for Fe3O4@ calix [8]COOH including TDOS, PDOS, and OPDOS Click here to View figure |
The total electrostatic potential (ESP) measures the electrostatic interaction between a unit point charges placed at r and the system of interest. A positive (negative) value implies that current position is dominated by nuclear (electronic) charges. Molecular electrostatic potential (ESP) has been widely used for prediction of nucleophilic and electrophilic sites for a long time.
It is also valuable in studying hydrogen bonds, halogen bonds, molecular recognitions and the intermolecular interaction of aromatics.[138-142]
References
- Nakamura,S.; Mukai,T.; Senoh, M.; Appl. Phys. Lett. 1994, 64, 1687.
CrossRef - Goldberger, J.; He, R.: Zhang,Y.; Lee, S.; Yan, H.; J. Choi, H.; Yang, P, Nature (London) ,2003 ,422, 599.
CrossRef - S.M. Lee, Y.H. Lee, Y.G. Hwang, J. Elsner, D. Porezag, T. Frauenheim, Phys. Rev.1999, B 60, 7788
- Iijima, S.; Nature (London)1991, 354, 56 (1991).
CrossRef - BERRY, C.C.; CURTIS, A. S. G. J Phys D: Appl Phys, 2003, 36: R198−R206.
- RUUGE, E.K.; RUSETSKI, A. N. J Magn Magn Mater, 1993, 122: 335−339.
- POPE, N.M.; ALSOP, R. C.; CHANG, Y. A.; SMITH, A. K. J Biomed Mater Res, 1994, 2: 449−457.
- Greenwood, Norman N.; Earnshaw, Alan , Chemistry of the Elements, 1997 (2nd ed.), Butterworth-Heinemann , ISBN 0080379419.
- Rochelle M. Cornell, Udo Schwertmann, the Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2007, Wiley-VCH ISBN 3-527-60644-0
- Ma, Ming; Zhang, Yu; Guo, Zhir4.ui; GU, Ning, Nanoscale Research Letters, 2013, 8 (1): 16. doi:10.1186/1556-276X-8-16.
CrossRef - Massart, R.; IEEE transactions on magnetics, 1981.,17, 2, 1247–1248
CrossRef - Sunggyu Lee (2006) Encyclopedia of Chemical Processing CRC Press ISBN 0-8247-5563-4
- Valter, Ström; Richard T.; Olsson, K. V. Rao. J. Mater. Chem, 2010, 20, 4168-4175
- Mei Fang, Valter Ström, Richard T. Olsson, Lyubov Belova, K. V. Rao, Rapid mixing: Appl. Phys. Lett.2011, 99, 222501
CrossRef - Monajjemi, M.; Baei, M.T.; Mollaamin, F. Russian Journal of Inorganic Chemistry. 2008, 53 (9), 1430-1437
CrossRef - Monajjemi, M.; Rajaeian, E.; Mollaamin, F.; Naderi, F.; Saki, S. Physics and Chemistry of Liquids. 2008, 46 (3), 299-306
CrossRef - Monajjemi, M.; Boggs, J.E. J. Phys. Chem. A, 2013, 117, 1670 −1684
CrossRef - Mollaamin, F.; Monajjemi, M, Journal of Computational and Theoretical Nanoscience. 2012, 9 (4) 597-601
CrossRef - Monajjemi, M.; Khaleghian, M, Journal of Cluster Science. 2011, 22 (4), 673-692
CrossRef - Mollaamin, F.; Varmaghani, Z.; Monajjemi, M, Physics and Chemistry of Liquids. 2011, 49 318
CrossRef - Nafisi, S.; Monajemi, M.; Ebrahimi, S. Journal of Molecular Structure. 2004,705 (3) 35-39
CrossRef - Fazaeli, R.; Monajjemi, M.; Ataherian, F.; Zare, K. Journal of Molecular Structure: THEOCHEM.2002, 581 (1), 51-58
CrossRef - Monajjemi, M.; Razavian, M.H.; Mollaamin,F.; Naderi,F.; Honarparvar,B.; Russian Journal of Physical Chemistry A , 2008 , 82 (13), 2277-2285
CrossRef - Monajjemi, M.; Seyed Hosseini, M.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures. 2013, 21, 381–393
CrossRef - Monajjemi, M.; Faham, R.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures, 2012 20, 163–169
CrossRef - Mollaamin, F.; Najafi, F.; Khaleghian, M.; Khalili Hadad, B.; Monajjemi, M. Fullerenes, Nanotubes, and Carbon Nanostructures, 2011 19, 653–667
- Mollaamin, F.; Baei, MT.; Monajjemi, M.; Zhiani, R.; Honarparvar, B.;
- Russian Journal of Physical Chemistry A, Focus on Chemistry, 2008, 82 (13), 2354-2361
CrossRef - Monajjemi, M. Chemical Physics. 2013, 425, 29-45
CrossRef - Monajjemi, M.; Heshmat, M.; Aghaei, H.; Ahmadi, R.; Zare, K. Bulletin of the Chemical Society of Ethiopia, 2007, 21 (1)
CrossRef - Monajjemi, M.; Honarparvar, B. H. ; Haeri, H. ; Heshmat ,M.; Russian Journal of Physical Chemistry C. 2006, 80(1):S40-S44
- Monajjemi, M.; Ketabi, S.; Amiri, A. Russian Journal of Physical Chemistry, 2006, 80 (1), S55-S62
- Yahyaei, H.; Monajjemi, M.; Aghaie, H.; K. Zare, K. Journal of Computational and Theoretical Nanoscience. 2013, 10, 10, 2332–2341
CrossRef - Mollaamin, F.; Gharibe, S.; Monajjemi, M. Int. J. Phy. Sci, 2011, 6, 1496-1500
- Monajjemi, M.; Ghiasi, R.; Seyed Sadjadi, M.A. Applied Organometallic Chemistry,2003, 17, 8, 635–640
CrossRef - Monajjemi, M.; Wayne Jr, Robert. Boggs, J.E. Chemical Physics. 2014, 433, 1-11
- Monajjemi, M.; Sobhanmanesh, A.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures, 2013, 21 47–63
CrossRef - Monajjemi, M.; Mollaamin, F. Journal of Computational and Theoretical Nanoscience, 2012, 9 (12) 2208-2214
CrossRef - Monajjemi, M.; Honarparvar, B.; Nasseri, S. M. .; Khaleghian M. Journal of Structural Chemistry. 2009, 50, 1, 67-77
CrossRef - Monajjemi, M.; Aghaie, H.; Naderi, F. Biochemistry (Moscow).2007, 72 (6), 652-657
CrossRef - Ardalan, T.; Ardalan, P.; Monajjemi, M. Fullerenes, Nanotubes, and Carbon Nanostructures, 2014, 22: 687–708
CrossRef - Mollaamin, F.; Monajjemi, M.; Mehrzad, J. Fullerenes, Nanotubes, and Carbon Nanostructures. 2014, 22: 738–751
CrossRef - Monajjemi, M.; Najafpour, J.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures. 2013, 21(3), 213–232
CrossRef - Monajjemi, M.; Karachi, N.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures, 2014, 22: 643–662
CrossRef - Yahyaei, H.; Monajjemi, M. Fullerenes, Nanotubes, and Carbon Nanostructures.2014, 22(4), 346–361
CrossRef - Monajjemi, M. Falahati, M.; Mollaamin, F.; Ionics, 2013, 19, 155–164
CrossRef - Monajjemi, M.; Mollaamin, F. Journal of Cluster Science, 2012, 23(2), 259-272
CrossRef - Tahan, A.; Monajjemi, M. Acta Biotheor, 2011, 59, 291–312
CrossRef - Lee, V.S.; Nimmanpipug, P.; Mollaamin, F.; Kungwan, N.; Thanasanvorakun, S..; Monajjemi, M. Russian Journal of Physical Chemistry A, 2009, 83, 13, 2288–2296
- Monajjemi, M.; Heshmat, M.; Haeri, HH, Biochemistry (Moscow), 2006, 71 (1), S113-S122
CrossRef - Monajjemi, M.; Yamola, H.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures, 2014, 22, 595–603
CrossRef - Mollaamin, F.; Layali, I.; Ilkhani A. R.; Monajjemi, M. African Journal of Microbiology Research .2010, 4(24) 2795-2803
- Mollaamin, F.; Shahani poor, p K. .; Nejadsattari, T. ; Monajjemi, M. African Journal of Microbiology Research. 2010, 4(20) 2098-2108
- Monajjemi, M.; Ahmadianarog, M. Journal of Computational and Theoretical Nanoscience. 2014, 11(6), 1465-1471
CrossRef - Monajjemi, M.; Jafari Azan, M.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures.2013, 21(6), 503–515
CrossRef - Mollaamin, F.; Monajjemi, M. Physics and Chemistry of Liquids .2012, 50, 5, 2012, 596–604
- Monajjemi, M.; Khosravi, M.; Honarparvar, B.; Mollaamin, F.; International Journal of Quantum Chemistry, 2011, 111, 2771–2777
CrossRef - Khaleghian, M.; Zahmatkesh, M.; Mollaamin, F.; Monajjemi, M. Fullerenes, Nanotubes, and Carbon Nanostructures, 2011, 19(4): 251–261
CrossRef - Monajjemi, M.; Baheri, H.; Mollaamin, F. Journal of Structural Chemistry.2011 52(1), 54-59
CrossRef - Mahdavian, L.; Monajjemi, M.; Mangkorntong, N. Fullerenes, Nanotubes and Carbon Nanostructures, 2009, 17 (5), 484-495
CrossRef - Monajjemi, M., Mahdavian, L., Mollaamin, F. Bull. Chem. Soc. Ethiop. 2008, 22(2), 277-286
CrossRef - Monajjemi, M.; Afsharnezhad, S, Jaafari, M.R..; Mirdamadi, S..; Mollaamin, F..; Monajemi, H. Chemistry .2008, 17 (1), 55-69
- Monajjemi, M.; Mollaamin, F.; Gholami, M. R.; Yoozbashizadeh, H.; Sadrnezhaad, S.K.; Passdar, H.; Main Group Metal Chemistry, 2003, 26, 6, 349-361
CrossRef - Monajjemi, M.; Azad ,MT.; Haeri, HH.; Zare, K.; Hamedani, Sh.; JOURNAL OF CHEMICAL RESEARCH-S.2003, (8): 454-456
- Monajjemi, M.; Najafpour, J. Fullerenes, Nanotubes, and Carbon Nanostructures, 2014, 22(6): 575–594
CrossRef - Monajjemi, M.; Noei, M.; Mollaamin, F. Nucleosides, Nucleotides and Nucleic Acids. 2010 29(9):676–683
CrossRef - Ghiasi, R.; Monajjemi, M. Journal of Sulfur Chemistry .2007, 28, 5, 505-511
CrossRef - Monajjemi, M.; Ghiasi, R.; Abedi, A. Russian Journal of Inorganic Chemistry.2005, 50(3), 382-388
- Monajjemi, M. .; Naderi, F.; Mollaamin, F.; Khaleghian, M. J. Mex. Chem. Soc. 2012, 56(2), 207-211
- Monajjemi, M.; Farahani, N.; Mollaamin, F. Physics and Chemistry of Liquids, 2012, 50(2) 161–172
CrossRef - Monajjemi, M.; Seyed Hosseini, M. Journal of Computational and Theoretical Nanoscience .2013, 10 (10), 2473-2477
CrossRef - Monajjemi , M.; Honaparvar , B.; Khalili Hadad ,B.; Ilkhani ,AR.; Mollaamin, F. African Journal of Pharmacy and Pharmacology .2010, 4(8), 521 -529
- Monajjemi, M. Theor Chem Acc, 2015, 134:77 DOI 10.1007/s00214-015-1668-9
CrossRef - Monajjemi, M. Journal of Molecular Modeling , 2014, 20, 2507
CrossRef - Monajjemi , M.; Honarparvar, B.; Monajemi, H.;. Journal of the Mexican Chemical Society, 2006, 50 (4), 143-148
- Monajjemi, M.; Khaleghian, M.; Mollaamin, F. Molecular Simulation. 2010, 36, 11, 865–
- Ilkhani, Ali R.; Monajjemi, M. Computational and Theoretical Chemistry.2015 1074, 19–25
CrossRef - Monajjemi, M. Biophysical Chemistry. 2015 207,114 –127
CrossRef - Monajjemi, M., Moniri, E., Panahi, H.A , Journal of Chemical and Engineering Data.2001, 1249-1254.
CrossRef - Mollaamin, F.; Najafpour, J.; Ghadami, S.; Ilkhani, A. R.; Akrami, M. S.; Monajjemi, M. Journal of Computational and Theoretical Nanoscience. 11 (5), 1290-1298
CrossRef - Monajjemi, M.; Ghiasi, R.; Ketabi, S.; Passdar, H.; Mollaamin, F. Journal of Chemical Research . 2004, 1, 11.
CrossRef - Monajjemi, M.; Heshmat, M.; Haeri, H.H. Biochemistry (Moscow).2006, 71, 113-122
CrossRef - Monajjemi, M.; Heshmat, M.; Aghaei, H.;Ahmadi, R.; Zare, K. Bulletin of the Chemical Society of Ethiopia. 2007, 21, 111–116
CrossRef - Monajjemi, M., Kharghanian, L., Khaleghian, M., Chegini, H. Fullerenes Nanotubes and Carbon Nanostructures.2014, 22, 8, 0.1080/1536383X.2012.717563
- Sarasia, E.M.; Afsharnezhad, S.; Honarparvar, B.; Mollaamin, F.; Monajjemi, M. Physics and Chemistry of Liquids. 2011, 49 (5), 561-571
CrossRef - Amiri, A.; Babaeie, F.; Monajjemi, M. Physics and Chemistry of Liquids. 2008, 46, 4, 379-389
CrossRef - Monajjemi, M.; Heshmat, M.; Haeri, H.H.; Kaveh, F. Russian Journal of Physical Chemistry A, 2006, 80, 7, 1061-1068
- Monajjemi, M.; Moniri, E.; Azizi, Z.; Ahmad Panahi, H. Russian Journal of Inorganic Chemistry. 2005, 50, 1, 40-44
- Jalilian,H.; Monajjemi, M. Japanese Journal of Applied Physics. 2015, 54, 8, 08510
- Mollaamin, F.; Monajjemi, M. Journal of Computational and Theoretical Nanoscience. 2015, 12, 6, 1030-1039
CrossRef - Felegari, Z.; Monajjemi, M. Journal of Theoretical and Computational Chemistry. 2015, 14, 3, 1550021
- Shojaee, S., Monajjemi, M. Journal of Computational and Theoretical Nanoscience. 2015, 12, 3, 449-458
CrossRef - Esmkhani, R.; Monajjemi, M. Journal of Computational and Theoretical Nanoscience. 2015. 12, 4, 652-659
CrossRef - Monajjemi, M., Seyedhosseini, M., Mousavi, M., Jamali, Z. Journal of Computational and Theoretical Nanoscience. 2015 , 23 (3), 239-244
- Ghiasi, R.; Monajjemi, M.; Mokarram, E.E.; Makkipour, P. Journal of Structural Chemistry. 2008, 4 , 4, 600-605
CrossRef - Mahdavian, L.; Monajjemi, M. Microelectronics Journal. 2010, 41(2-3), 142-149
CrossRef - Monajjemi, M.; Baie, M.T.; Mollaamin, F. Russian Chemical Bulletin.2010, 59, 5, 886-889
CrossRef - Bakhshi, K.; Mollaamin, F.; Monajjemi, M. Journal of Computational and Theoretical Nanoscience. 2011, 8, 4, 763-768
CrossRef - Darouie, M.; Afshar, S.; Zare, K., Monajjemi, M. journal of Experimental Nanoscience.2013, 8, 4, 451-461
- Amiri, A.; Monajjemi, M.; Zare, K.; Ketabi, S. Physics and Chemistry of Liquids. 2006, 44, 4, 449-456.
CrossRef - Zonouzi, R.;Khajeh, K.; Monajjemi, M.; Ghaemi, N. Journal of Microbiology and Biotechnology. 2013, 23, 1 ,7-14
CrossRef - Ali R. Ilkhani , Majid Monajjemi, Computational and Theoretical Chemistry 1074 (2015) 19–25
CrossRef - Tahan, A.; Mollaamin, F.; Monajjemi, M. Russian Journal of Physical Chemistry A, 2009, 83 (4), 587-597
- Khalili Hadad, B.; Mollaamin, F.; Monajjemi, M, Russian Chemical Bulletin,2011, 60(2):233-236
CrossRef - Mollaamin, F.; Monajjemi, M.; Salemi, S.; Baei, M.T. Fullerenes Nanotubes and Carbon Nanostructures, 2011, 19, 3, 182-196
CrossRef - Mollaamin, F.; Shahani Pour.; K., Shahani Pour, K.; ilkhani, A.R.; Sheckari, Z., Monajjemi, M Russian Chemical Bulletin , 2012 , 61(12), 2193-2198
- Shoaei, S.M.; Aghaei, H.; Monajjemi, M.; Aghaei, M. Phosphorus, Sulfur and Silicon and the Related Elements. 2014, 189, 5; 652-660
CrossRef - Mehrzad, J., Monajjemi, M., Hashemi, M , Biochemistry (Moscow).2014 , 79 (1), 31-36
CrossRef - Moghaddam, N.A., Zadeh, M.S., Monajjemi, M. Journal of Computational and Theoretical Nanoscience , 2015 , 12,. 3, doi:10.1166/jctn.2015.3736
CrossRef - Joohari, S.; Monajjemi, M , Songklanakarin Journal of Science and Technology , 2015 , 37(3):327
- Rajaian, E., Monajjemi, M., Gholami, M.R, Journal of Chemical Research – Part S ,2002, 6, 1, 279-281
CrossRef - Ghassemzadeh, L., Monajjemi, M., Zare, K , Journal of Chemical Research – Part S, 2003, 4, 195-199
CrossRef - Monajjemi, M.; Lee, V.S.; Khaleghian, M.; B. Honarparvar, B.; F. Mollaamin, F. J. Phys.Chem C. 2010, 114, 15315
CrossRef - Monajjemi, M. Struct Chem. 2012, 23,551–580
CrossRef - Monajjemi, M.; Chegini, H.; Mollaamin, F.; Farahani, P. Fullerenes, Nanotubes, and Carbon Nanostructures. 2011, 19, 469–482
CrossRef - Monajjemi, M .; Afsharnezhad ,S.; Jaafari , M.R.; Abdolahi ,T.; Nikosade ,A.; Monajemi ,H.; Russian Journal of physical chemistry A, 2007, 2,1956-1963
- Mehdizadeh Barforushi,M.; Safari,S.; Monajjemi,M. J. Comput. Theor. Nanosci.2015, 12, 3058-3065.
CrossRef - Mollaamin,F.; Ilkhani,A.; Sakhaei,N.; Bonsakhteh,B.; Faridchehr,A.; Tohidi,S.; Monajjemi, M. J. Comput. Theor. Nanosci. 2015,12, 3148-3154
CrossRef - Rahmati,H.; Monajjemi,M. J. Comput. Theor. Nanosci. 2015, 12, 3473-3481.
CrossRef - Roghieh Tarlani Bashiz,R.; Monajjemi,M. J. Comput. Theor. Nanosci.2015, 12, 3808-3816
CrossRef - Mehrabi Nejad,A.; Monajjemi,M. J. Comput. Theor. Nanosci. 2015, 12, 3902-3910.
CrossRef - Monajjemi,M.; Bagheri,S.; Moosavi,M.S.; Moradiyeh,N.; Zakeri,M.;Attarikhasraghi,N.; Saghayimarouf,N.; Niyatzadeh,G.; Shekarkhand,M.; Khalilimofrad,M.S.; Ahmadin,H.; Ahadi,M.; Molecules 2015, 20, 21636–21657; doi:10.3390/molecules201219769
CrossRef - Shabanzadeh,E.; Monajjemi,M.; J. Comput. Theor. Nanosci.2015, 12, 4076-4086
CrossRef - Elsagh,A.; Jalilian, H.; Kianpour, E.; Ghazi, Mokri, H.S.; Rajabzadeh,M.; Moosavi,M.S.; Ghaemi Amiri,F.; Majid Monajjemi ,M.; J. Comput. Theor. Nanosci. 2015, 12, 4211-4218.
CrossRef - Faridchehr, A.; Rustaiyan,A.; Monajjemi,M.; J. Comput. Theor. Nanosci.2015, 12, 4301-4314.
CrossRef - Tohidi, S.; Monajjemi, M.; Rustaiyan, A.; J. Comput. Theor. Nanosci. 2015, 12, 4345-4351
CrossRef - Ali Akbari Zadeh,M.; Lari,H.; Kharghanian,L.; Balali,E.; Khadivi,R.; Yahyaei,H.; Mollaamin,F.; Monajjemi, M.; J. Comput. Theor. Nanosci.2015, 12, 4358-4367.
CrossRef - Dezfooli,S.; Lari,H.; Balali,E.; Khadivi,R.; Farzi,F.; Moradiyeh,N.; Monajjemi,M.; J. Comput. Theor. Nanosci.2015, 12, 4478-4488 .
CrossRef - Jalilian,H.; Sayadian,M.; Elsagh,A.; Farzi,F.; Moradiyeh,N.; Samiei Soofi,N.; Khosravi,S.;. Mohammadian,N.T.; Monajjemi,M. J. Comput. Theor. Nanosci. 2015,12, 4785-4793.
CrossRef - Farzi,F.; Bagheri,S.; Rajabzadeh,M.; Sayadian,M.; Jalilian,H.; Moradiyeh,N.; Monajjemi, M.; J. Comput. Theor. Nanosci.2015, 12, 4862-4872.
CrossRef - Monajjemi,M.; Mohammadian, N.T, J. Comput. Theor. Nanosci. 2015, 12, 4895-4914
CrossRef - Monajjemi, M., Chahkandi, B. Journal of Molecular Structure: THEOCHEM, 2005, 714 (1), 28, 43-60.
CrossRef - Naghsh,F, Orient. J. Chem., 2015, 31(1)., 465-478
CrossRef - Chitsazan, A, Orient. J. Chem., 2015, 31(1)., 393-408
CrossRef - R.F.W. Bader, atoms in Molecule: A quantum Theory (Oxford Univ. press, Oxford, 1990).
- Savin, A., Jepsen,O., Flad, J., Andersen, OK, Preuss, H. & von Schering, HG. Angew. Chem. Int. Ed. Engl. 1992, 31, 187-188
CrossRef - Tsirelson and Stash, Chem. Phys. Lett. 2002, 351, 142
CrossRef - Schmider and Becke, J. Mol. Struct. (THEOCHEM),2000, 527, 51.
CrossRef - Heiko Jacobsen,Canadian Journal of Chemistry, 2009, 87(7): 965-973, 10.1139/V09-060
CrossRef - Sadegh,H.; Shahryari-ghoshekandi,R.; Agrawal, S.; Tyagi,I.; Asif,M, Gupta,V.K, Journal of Molecular Liquids, 2015, 206, 151-158 .
CrossRef - Gupta,V.K.; Tyagi,I.; Agrawal,S.; Sadegh,H.; Shahryari-ghoshekandi, R.; Yari,M.; Yousefi-nejat,O.; Journal of Molecular Liquids, 2015, 206, 126-136
CrossRef - Sadegh,H.; Shahryari-ghoshekandi,R.; Tyagi,I.; Agrawal,S.; Gupta,V.K, Journal of Molecular Liquids,2015, 207, 21-27.
CrossRef - Sadegh,H.: Zare,K.; Maazinejad,B.; Shahryari-ghoshekandi,R.; Tyagi,I.; Agrawal,S.; Gupta,V.K, Journal of Molecular Liquids, 2016,215, 221-228.
CrossRef - Zare,K.; Sadegh,H.; Shahryari-ghoshekandi,R.; Asif,M.; Tyagi,I.; Shilpi Agrawal, Gupta,V.K Journal of Molecular Liquids, 2016, 213, 345-350
CrossRef
This work is licensed under a Creative Commons Attribution 4.0 International License.