ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039
     FacebookTwitterLinkedinMendeley

Nano particles@Calix arenas via aqueous  solution

Sahar Dehghani

Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.   Corresponding author Email: sahardehghani27@yahoo.com

DOI : http://dx.doi.org/10.13005/ojc/320224

Article Publishing History
Article Received on :
Article Accepted on :
Article Published : 10 May 2016
Article Metrics
ABSTRACT:

The electronic structure and magnetic properties of Al2O3, GaN and Fe3O4@ Calix (8) COOH have been studied using ONIOM and DFT methods.  The studies focus on how to improve the adsorption of some nano particles solution aqueous for achieving good magnetic and functionalized potential performances. The results revealed that the Fe3O4@ Calix (8) COOH and some of its derivations exhibited better thermodynamic stability. Furthermore, the particle size and magnetic property of the GaN@ Calix (8) COOH nano particles can be controlled by the aqueous. The electrical properties such as NMR Shielding, electron densities, energy densities, potential energy densities, ELF, LOL, ellipticity of electron density, eta index and ECP for nano particles@ Calix (8)COOH have been calculated.

KEYWORDS:

super paramagnetic nano particle; QM/MM simulation; Calix (n)

Download this article as: 

Copy the following to cite this article:

Dehghani S. Nano particles @ Calix arenas via aqueous solution. Orient J Chem 2016;32(2)


Copy the following to cite this URL:

Dehghani S. Nano particles @ Calix arenas via aqueous solution. Orient J Chem 2016;32(2). Available from: http://www.orientjchem.org/?p=15979


Introduction

What makes GaN popular is not only it is more robust but it can emit in the short wave-length part of the visible spectrum. For example, there are now GaN-based high-efficiency blue and green light-emitting diodes [1] And just when researchers thought things could not get better for GaN, a whole new field of research has opened up in the form of GaN nanotubes [2]. These nanotubes were synthesized by an” epitaxial casting” strategy by the research group of Peidong Yang at Lawrence Berkeley National Lab oratory. ZnO nanowires, grown on sapphire wafers, were used as templates for epitaxial overgrowth of thin GaN layers in a chemical vapor

Deposition (CVD) system. The result of electron diffraction measurements showed that the nanotubes obtained in this way are single-crystal, and in this respect they are fundamentally different from theoretically simulated GaN nanotubes [3] with the conventional tubular
forms of carb on atoms [4].

Table 1: All Electron Densities Of Non-Bonded Interactions For Al2O3@ Calix [8]COOH

Atom(number) Density of all electron( Density of alpha(   Density of Beta( Spin Density
Al(1) 0.18 0.09 0.09 0.0
Al(2) 0.18 0.09 0.09 0.0

 

On the other hand, most of the applications require magnetic particles to disperse in a non-magnetic matrix. The matrixes play an important role in determining physical properties of the composite nanoparticle in addition to providing a means of particle dispersion [5].

Fe3O4 is an electrical conductor with conductivity significantly higher than Fe2O3, and this is ascribed to electron exchange between the FeII and FeIII centers [8-11].

Fe3O4 is ferromagnetic with a curie temperature of 858 K and The ferromagnetism of Fe3O4 arises because the electron spins of the FeII and FeIII ions in the octahedral sites are coupled and the spins of the FeIII ions in the tetrahedral sites are coupled but anti-parallel to the former[4-7].

Table 2: All Electron Energies of non-bonded interactions for Fe3O4@ Calix [8]COOH

Atom(number) Lagrangian kinetic [G(r)]energy( Hamiltonian kinetic [K(r)]energy(
Fe(1) 0.34 0.41
Fe(2) 0.36 0.52
Fe(3) 0.32 0.41

 

Nano-Magnetites have shown great potential applications in the field of in vitro and in vivo biomedicine, including cellular therapy in cell labeling, separation and purification, target-drug delivery, and hyperthermia treatment of cancers.

Magnetic nanoparticles have attracted much interest not only in the field of magnetic recording but also in the areas of medical field of magnetic sensing. Especially, nanoparticles of iron oxide are reported to be applicable as a material for use in drug delivery systems, magnetic resonance imaging, and cancer therapy [5−8].

Table 3: Laplacian, ELF, LOL and Local information entropy of non-bonded interactions for Fe3O4@ Calix [8]COOH 

Atom(number) Laplacian of electron density( Electron localization function (ELF) ( Local information entropy(
Fe(1) -0.12 0.47 0.33
Fe(2) -0.41 0.21 0.41
Fe(3) -0.38 0.34 0.12

 

Fe3O4 is used as a catalyst in the Haber process and in the water gas shift reaction [12,13].

The latter uses an HTS (high temperature shift catalyst) of iron oxide stabilized by chromium oxide [11, 12]. This iron-chrome catalyst is reduced at reactor start up to generate Fe3O4 from α-Fe2O3 and Cr2O3 to CrO3 [13].

In this work the Al2O3, GaN and Fe3O4@ Calix (8) COOH have been investigated and the catalysis’s properties of these nanoparticles have been studied

The data have been compared with the those nanoparticles @ CWCNNTs and BNNTs

Carbon nanotube (CNT) is a representative nano-material. CNT is a cylindrically shaped carbon material with a nano-metric-level diameter [11-38].Its structure, which is in the form of a hexagonal mesh, resembles a graphite sheet and it carries a carbon atom located on the vertex of each mesh. The sheet has rolled and its two edges have connected seamlessly [39-45].

Table 4: Average local ionization energy, RDG and ESP of non-bonded interactions for GaN@ Calix [8]

Atom(number) Reduced density gradient(RDG)( Average local ionization energy ESP from electron charge (
Ga(1) 0.30 0.31 -0.21
N(2) 0.34

0.33

-0.51

 

Although it is a commonplace material using in pencil leads, its unique structure causes it to present characteristics that had not found with any other materials. CNT can be classified into single-wall CNT, double-wall CNT and multi-wall CNT according to the number of layers of the rolled graphite [46, 70].

The type attracting most attention is the single-wall CNT, which has a diameter deserving the name of “nanotube” of 0.4 to 2 nanometers. The length is usually in the order of microns, but single-wall CNT with a length in the order of centimeters has recently released.

The length is usually in the order of microns, but single-wall CNT with a length about centimeters have recently released. The extremities of the CNT have usually closed with lids of the graphite sheet [70-85].

CNT can be classified into single-wall CNT, double-wall CNT and multi-wall CNT according to the number of layers of the rolled graphite. The type attracting most attention is the single-wall CNT, which has a diameter deserving the name of “nanotube” of 0.4 to 2 nanometers [51-69].

The lids consist of hexagonal crystalline structures (six-membered ring structures) and a total of six pentagonal structures (five-membered ring structures) placed here and there in the hexagonal structure [86-99]. The first report by Iijima was on the multi wall form, coaxial carbon cylinders with a few tens of nanometers in outer diameter. Two years later single walled nanotubes were reported [80-100]. SWBNNTs have considered as the leading candidate for nano-device applications because of their one-dimensional electronic bond structure, molecular size, and biocompatibility, controllable property of conducting electrical current and reversible response to biological reagents hence SWBNNTs make possible bonding to polymers and biological systems such as DNA and carbohydrates [100-133].&nbsp

Computational Details

Part of the systems including GaN, Al2O3 and Fe3O4@ Calix (8)COOH, and @ SWBNNNTs and SWCNTs have been modeled with ONIOM method and the calculations are carried out with the Molecular Mechanics methods. In this investigation, differences in force field are illustrated by comparing the calculated energy with CHARMM, AMBER and OPLS force fields. Furthermore, a Hyper Chem professional release 7.01 programs is used for the additional calculations.

For non-covalent interactions between nano particles  and Calix (8)COOH , the B3LYP method is unable to describe van der Waals by medium-range interactions. Therefore, the ONIOM methods including 3 levels of 1-high calculation (H), 2-medium calculation (M), and 3-low calculation (L) have been performed in our study for calculating the non-bonded interactions between nanoparticles  and Calix (8)COOH.

Table 5: Lambada2, Wave function value, Ellipticity of electron density and Eta index of non-bonded interactions for Al2O3@ Calix [8]COOH 

Atom(number) Wave function value  Ellipticity of electron density
Al(1) 0.49 0.13
Al(2) 0.57 0.23
O(3) 0.23 0.28

 

The ab-initio and DFT methods are used for the model system of the ONIOM layers and the semi empirical methods of pm6 (including pseudo=lanl2) and Pm3MM are used for the medium and low layers, respectively.

B3LYP and the most other popular and widely used functional are insufficient to illustrate the exchange and correlation energy for distant non-bonded medium-range systems correctly. Moreover, some recent studies have shown that inaccuracy for the medium-range exchange energies leads to large systematic errors in the prediction of molecular properties.

Table 6: All Electron Densities of non-bonded interactions forAl2O3(6, 6)SWBNNTs 

 

Atom(number) Density of all electron( Density of alpha(   Density of Beta( Spin Density
AL(1) 0.23 0.25 0.16 0.0
Al(2) 0.35 0.12 0.15 0.0

 

Table 7. The properties calculated data for Calix[8,8]COOH Table 7: The properties calculated data for Calix[8,8]COOH 

Click here to View table

 

Geometry optimizations and electronic structure calculations have been carried out using the m06 (DFT) functional. This approach is based on an iterative solution of the Kohn-Sham equation of the density functional theory in a plane-wave set with the projector-augmented wave pseudo-potentials. The Perdew-Burke-Ernzerh of (PBE) exchange-correlation (XC) functional of the generalized gradient approximation (GGA) is also used. The optimizations of the lattice constants and the atomic coordinates are made by the minimization of the total energy.

 

Fig.1: Optimized Calix [8] COOH including Fe3, O4, GaN and Al2O3 nanoparticles with DFT methods Figure 1: Optimized Calix [8] COOH including Fe3, O4, GaN and Al2O3 nanoparticles with DFT methods
Click here to View figure

 

The charge transfer and electrostatic potential-derived charge were also calculated using the Merz-Kollman-Singh chelp or chelpG the charge calculation methods based on molecular electrostatic potential (MESP) fitting are not well-suited for treating larger systems whereas some of the innermost atoms are located far away from the points at which the MESP is computed. In such a condition, variations of the innermost atomic charges will not head towards a significant change of the MESP outside of the molecule, meaning that the accurate values for the innermost atomic charges are not well-determined by MESP outside the molecule . The representative atomic charges for molecules should be computed as average values over several molecular conformations.

Fig.2 The Calix [8,8]COOH situations versus axis Figure 2: The Calix [8,8]COOH Situations Versus Axis
Click here to View figure

 

Fig.3: Shaded map including projection for calix [8]COOH Figure 3: Shaded map including projection for calix [8]COOH 

Click here to View figure

 

A detailed overview of the effects of the basis set and the Hamiltonian on the charge distribution can be found in references . The charge density profiles in this study has been extracted from first-principles calculation through an averaging process as described in reference [122-124]. The interaction energy for capacitor was calculated in all items according to the equation as follows:

Formula

 

Where the “ΔEs ” is the stability energy.

The electron density, electron spin density, electron localization function (ELF), total electrostatic potential (ESP), value of orbital wave-function, electrostatic potential from nuclear atomic charges and localized orbital locator (LOL) which has been  defined by Becke & Tsirelson, as well as the exchange-correlation density, correlation hole and correlation factor, and the average local ionization energy using the Multifunctional Wave-function analyzer have also been calculated in this study [122-124]. The contour line map was also drawn using the Multi wfn software [122, 124]. The solid lines indicate positive regions, while the dash lines indicate negative regions. The contour line corresponding to VdW surface which is defined by R. F. W Bader is plotted in this study. This is specifically useful to analyze distribution of electrostatic potential on VdW surface.

Fig.4 Relief map for Calix [8]COOH Figure 4: Relief map for Calix [8]COOH 

Click here to View figure

 

Theoretical Background

electron density

The electron density has been defined as p(r) = ηii(r)|2= Σiηi|ΣC∫xi(r)|2(2). Where x is basis function,  is occupation number of orbital (i), Φ is orbital wave function, and C is coefficient matrix. Atomic unit for electron density can be explicitly written as:

Formula

 

Locally depleted and locally concentrated are the positive and negative value of these functions, respectively. The relationships between  and valence shell electron pair repulsion or VSEPR model, electron localization, chemical bond type, and chemical reactivity have been investigated by Bader [133].

The kinetic energy density is not uniquely defined, since the expected value of kinetic energy operator <Φ|-(1/2)ν2|Φ> can be recovered by integrating kinetic energy density from alternative definitions. One of commonly used definition is:

Formula

Lagrangian kinetic energy density, “G(r)” is also known as positive definite kinetic energy density.

Formula

 

K(r) and G(r) are directly related by Laplacian of electron density

Formula

Becke and Edgecombe noted that spherically averaged like spin conditional pair probability has direct correlation with the Fermi hole and then suggested electron localization function (ELF)

Formula

 

Savin et al. have investigated the ELF in the view point of kinetic energy, [134] which makes ELF also meaningful for Kohn-Sham DFT wave-function or even post-HF wave-function. They indicated that D(r) reveals the excess kinetic energy density caused by Pauli repulsion, while D0(r) can be considered as Thomas-Fermi kinetic energy density [135].

Localized orbital locator (LOL) is another function for locating high localization regions likewise ELF, defined by Schmider and Becke in the paper [136]. LOL(r) = t(r)/1+t(r)    (13)

Formula

for spin-polarized system and close-shell system are defined in the same way as in ELF [137].

Result and discussion: functionalized

This study mainly focuses on the magnetic properties of nanoparticles in a non-bonded system with Calix (8) COOH and (n, n) SWCNTs core-shells. The non-bonded interaction is shown in figs1-7. As it is indicated in tables 1-7, the electrical properties can be obtained from changes in the non-bonded interactions. Electron densities, energy densities, Potential energy densities, ELF, LOL, and Ellipticity of electron density, eta index and ECP for nanoparticles @ Calix (8)COOH and nanoparticles @ SWCNTs were calculated of each simulation (Tables 1-7).

The largest electron localization is located on Al2O3 where the electron motion is more likely to be confined within that region. If electrons are completely localized in the GaN, they can be distinguished from the ones outside. As shown in tables 1-8 the large ELF is close to the Al2O3 atoms. The regions with large electron localization need to have large magnitudes of Fermi-hole integration which would lead the nanoparticles towards superparamagnetic. The fermi hole is a six-dimension function and as a result, it is difficult to be studied visually. Based on equations 12, 13 and 14, Becke and Edgecombe noted that the Fermi hole is a spherical average of the spin which is in good agreement with our results in tables and Figs.

 Fig5. Color and contour map for the Calix[8]COOH Figure 5: Color and contour map for the Calix[8]COOH 


Click here to View figure

 

ELF indicates that it is actually a relative localization and must be accounted within the range of [0, 1]. A large ELF value corresponds to largely localized electrons which indicate that a covalent bond, a lone pair or inner shells of the atom is involved. According to equation 16, LOL can be interpreted similar to ELF in terms of kinetic energy, though; LOL can also be interpreted in terms of localized orbitals. Small (large) LOL value usually appears in boundary (inner) region of localized orbitals due to the large (small) gradient of orbital wave-function in this area. The value range of LOL is identical to ELF, namely [0, 1].

 

Fig.6.Density of states for Fe3O4@ calix [8]COOH including TDOS, PDOS, and OPDOS Figure 6:Density of states for Fe3O4@ calix [8]COOH including TDOS, PDOS, and OPDOS 

Click here to View figure

 

The total electrostatic potential (ESP) measures the electrostatic interaction between a unit point charges placed at r and the system of interest. A positive (negative) value implies that current position is dominated by nuclear (electronic) charges. Molecular electrostatic potential (ESP) has been widely used for prediction of nucleophilic and electrophilic sites for a long time.

It is also valuable in studying hydrogen bonds, halogen bonds, molecular recognitions and the intermolecular interaction of aromatics.[138-142]

References

  1. Nakamura,S.; Mukai,T.; Senoh, M.; Appl. Phys. Lett. 1994, 64, 1687.
    CrossRef
  2. Goldberger, J.; He, R.: Zhang,Y.; Lee, S.; Yan, H.; J. Choi, H.; Yang, P, Nature (London) ,2003 ,422, 599.
    CrossRef
  3. S.M. Lee, Y.H. Lee, Y.G. Hwang, J. Elsner, D. Porezag, T. Frauenheim, Phys. Rev.1999,  B 60, 7788
  4. Iijima, S.; Nature (London)1991, 354, 56 (1991).
    CrossRef
  5. BERRY, C.C.; CURTIS, A. S. G. J Phys D: Appl Phys, 2003, 36: R198−R206.
  6. RUUGE, E.K.; RUSETSKI, A. N. J Magn Magn Mater, 1993, 122: 335−339.
  7. POPE, N.M.; ALSOP, R. C.; CHANG, Y. A.; SMITH, A. K. J Biomed Mater Res, 1994, 2: 449−457.
  8. Greenwood, Norman N.; Earnshaw, Alan , Chemistry of the Elements, 1997 (2nd ed.), Butterworth-Heinemann , ISBN 0080379419.
  9. Rochelle M. Cornell, Udo Schwertmann, the Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2007, Wiley-VCH ISBN 3-527-60644-0
  10. Ma, Ming; Zhang, Yu; Guo, Zhir4.ui; GU, Ning, Nanoscale Research Letters, 2013, 8 (1): 16. doi:10.1186/1556-276X-8-16.
    CrossRef
  11. Massart, R.; IEEE transactions on magnetics, 1981.,17, 2,  1247–1248
    CrossRef
  12. Sunggyu Lee (2006) Encyclopedia of Chemical Processing CRC Press ISBN 0-8247-5563-4
  13. Valter, Ström; Richard T.; Olsson, K. V. Rao. J. Mater. Chem, 2010, 20, 4168-4175
  14. Mei Fang, Valter Ström, Richard T. Olsson, Lyubov Belova, K. V. Rao, Rapid mixing: Appl. Phys. Lett.2011, 99, 222501
    CrossRef
  15. Monajjemi, M.; Baei, M.T.; Mollaamin, F. Russian Journal of Inorganic Chemistry. 2008, 53 (9), 1430-1437
    CrossRef
  16. Monajjemi, M.; Rajaeian, E.; Mollaamin, F.; Naderi, F.; Saki, S. Physics and Chemistry of Liquids. 2008, 46 (3), 299-306
    CrossRef
  17. Monajjemi, M.;  Boggs, J.E.  J. Phys. Chem. A, 2013, 117, 1670 −1684
    CrossRef
  18. Mollaamin, F.; Monajjemi, M, Journal of Computational and Theoretical Nanoscience. 2012, 9 (4) 597-601
    CrossRef
  19. Monajjemi, M.; Khaleghian, M, Journal of Cluster Science. 2011, 22 (4), 673-692
    CrossRef
  20. Mollaamin, F.; Varmaghani, Z.; Monajjemi, M, Physics and Chemistry of Liquids. 2011, 49 318
    CrossRef
  21. Nafisi, S.; Monajemi, M.; Ebrahimi, S. Journal of  Molecular Structure. 2004,705 (3) 35-39
    CrossRef
  22. Fazaeli, R.; Monajjemi, M.; Ataherian, F.; Zare, K. Journal of Molecular Structure: THEOCHEM.2002, 581 (1), 51-58
    CrossRef
  23. Monajjemi, M.;  Razavian, M.H.;  Mollaamin,F.;  Naderi,F.;  Honarparvar,B.; Russian Journal of Physical Chemistry A , 2008 , 82 (13),  2277-2285
    CrossRef
  24. Monajjemi, M.; Seyed Hosseini, M.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures. 2013, 21, 381–393
    CrossRef
  25. Monajjemi, M.; Faham, R.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures, 2012 20, 163–169
    CrossRef
  26. Mollaamin, F.; Najafi, F.; Khaleghian, M.; Khalili Hadad, B.; Monajjemi, M.  Fullerenes, Nanotubes, and Carbon Nanostructures, 2011 19, 653–667
  27. Mollaamin, F.;  Baei, MT.;  Monajjemi, M.; Zhiani, R.;  Honarparvar, B.;
  28. Russian Journal of Physical Chemistry A, Focus on Chemistry, 2008, 82 (13), 2354-2361
    CrossRef
  29. Monajjemi, M. Chemical Physics. 2013, 425, 29-45
    CrossRef
  30. Monajjemi, M.; Heshmat, M.; Aghaei, H.; Ahmadi, R.; Zare, K. Bulletin of the Chemical Society of Ethiopia, 2007, 21 (1)
    CrossRef
  31. Monajjemi, M.; Honarparvar, B. H. ; Haeri, H. ; Heshmat ,M.;  Russian Journal of  Physical Chemistry C. 2006, 80(1):S40-S44
  32. Monajjemi, M.; Ketabi, S.; Amiri, A. Russian Journal of Physical Chemistry, 2006, 80 (1), S55-S62
  33. Yahyaei, H.; Monajjemi, M.; Aghaie, H.; K. Zare, K. Journal of Computational and Theoretical Nanoscience. 2013, 10, 10, 2332–2341
    CrossRef
  34. Mollaamin, F.; Gharibe, S.; Monajjemi, M. Int. J. Phy. Sci, 2011, 6, 1496-1500
  35. Monajjemi, M.; Ghiasi, R.; Seyed Sadjadi, M.A. Applied Organometallic Chemistry,2003, 17, 8, 635–640
    CrossRef
  36. Monajjemi, M.; Wayne Jr, Robert. Boggs, J.E.  Chemical Physics. 2014, 433, 1-11
  37. Monajjemi, M.; Sobhanmanesh, A.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures, 2013, 21 47–63
    CrossRef
  38. Monajjemi, M.; Mollaamin, F. Journal of Computational and Theoretical Nanoscience, 2012, 9 (12) 2208-2214
    CrossRef
  39. Monajjemi, M.; Honarparvar, B.; Nasseri, S. M. .; Khaleghian M. Journal of Structural Chemistry. 2009, 50, 1, 67-77
    CrossRef
  40. Monajjemi, M.; Aghaie, H.; Naderi, F. Biochemistry (Moscow).2007, 72 (6), 652-657
    CrossRef
  41. Ardalan, T.; Ardalan, P.; Monajjemi, M. Fullerenes, Nanotubes, and Carbon Nanostructures, 2014, 22: 687–708
    CrossRef
  42. Mollaamin, F.; Monajjemi, M.; Mehrzad, J. Fullerenes, Nanotubes, and Carbon Nanostructures. 2014, 22: 738–751
    CrossRef
  43. Monajjemi, M.; Najafpour, J.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures. 2013, 21(3), 213–232
    CrossRef
  44. Monajjemi, M.;  Karachi, N.; Mollaamin, F.  Fullerenes, Nanotubes, and Carbon Nanostructures, 2014, 22: 643–662
    CrossRef
  45. Yahyaei, H.; Monajjemi, M. Fullerenes, Nanotubes, and Carbon Nanostructures.2014, 22(4), 346–361
    CrossRef
  46. Monajjemi, M. Falahati, M.; Mollaamin, F.; Ionics, 2013, 19, 155–164
    CrossRef
  47. Monajjemi, M.; Mollaamin, F. Journal of Cluster Science, 2012, 23(2), 259-272
    CrossRef
  48. Tahan, A.; Monajjemi, M. Acta Biotheor, 2011, 59, 291–312
    CrossRef
  49. Lee, V.S.; Nimmanpipug, P.; Mollaamin, F.; Kungwan, N.; Thanasanvorakun, S..; Monajjemi, M.  Russian Journal of Physical Chemistry A, 2009, 83, 13, 2288–2296
  50. Monajjemi, M.; Heshmat, M.; Haeri, HH, Biochemistry (Moscow), 2006, 71 (1), S113-S122
    CrossRef
  51. Monajjemi, M.; Yamola, H.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures, 2014, 22, 595–603
    CrossRef
  52. Mollaamin, F.; Layali, I.; Ilkhani A. R.; Monajjemi, M.  African Journal of Microbiology Research .2010, 4(24) 2795-2803
  53. Mollaamin, F.; Shahani poor, p K. .; Nejadsattari, T.  ; Monajjemi, M. African Journal of Microbiology Research. 2010, 4(20) 2098-2108
  54. Monajjemi, M.; Ahmadianarog, M. Journal of Computational and Theoretical Nanoscience. 2014,   11(6), 1465-1471
    CrossRef
  55. Monajjemi, M.; Jafari Azan, M.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures.2013, 21(6), 503–515
    CrossRef
  56. Mollaamin, F.; Monajjemi, M. Physics and Chemistry of Liquids .2012, 50,  5,  2012, 596–604
  57. Monajjemi, M.; Khosravi, M.; Honarparvar, B.; Mollaamin, F.; International Journal of Quantum Chemistry, 2011, 111, 2771–2777
    CrossRef
  58. Khaleghian, M.; Zahmatkesh, M.; Mollaamin, F.; Monajjemi, M.  Fullerenes, Nanotubes, and Carbon Nanostructures, 2011, 19(4): 251–261
    CrossRef
  59. Monajjemi, M.; Baheri, H.; Mollaamin, F.  Journal of Structural Chemistry.2011 52(1), 54-59
    CrossRef
  60. Mahdavian, L.; Monajjemi, M.; Mangkorntong, N. Fullerenes, Nanotubes and Carbon Nanostructures, 2009, 17 (5), 484-495
    CrossRef
  61. Monajjemi, M., Mahdavian, L., Mollaamin, F. Bull. Chem. Soc. Ethiop. 2008, 22(2), 277-286
    CrossRef
  62. Monajjemi, M.; Afsharnezhad, S, Jaafari, M.R..; Mirdamadi, S..; Mollaamin, F..; Monajemi, H. Chemistry .2008, 17 (1), 55-69
  63. Monajjemi, M.; Mollaamin, F.; Gholami, M. R.; Yoozbashizadeh, H.;  Sadrnezhaad, S.K.; Passdar, H.;  Main Group Metal Chemistry, 2003, 26, 6, 349-361
    CrossRef
  64. Monajjemi, M.; Azad ,MT.; Haeri, HH.; Zare, K.; Hamedani, Sh.; JOURNAL OF CHEMICAL RESEARCH-S.2003, (8): 454-456
  65. Monajjemi, M.; Najafpour, J. Fullerenes, Nanotubes, and Carbon Nanostructures, 2014, 22(6): 575–594
    CrossRef
  66. Monajjemi, M.; Noei, M.; Mollaamin, F. Nucleosides, Nucleotides and Nucleic Acids. 2010 29(9):676–683
    CrossRef
  67. Ghiasi, R.; Monajjemi, M.  Journal of Sulfur Chemistry .2007, 28, 5, 505-511
    CrossRef
  68. Monajjemi, M.; Ghiasi, R.; Abedi, A. Russian Journal of Inorganic Chemistry.2005, 50(3), 382-388
  69. Monajjemi, M. .; Naderi, F.; Mollaamin, F.; Khaleghian, M.  J. Mex. Chem. Soc. 2012, 56(2), 207-211
  70. Monajjemi, M.; Farahani, N.; Mollaamin, F.  Physics and Chemistry of Liquids, 2012, 50(2) 161–172
    CrossRef
  71. Monajjemi, M.; Seyed Hosseini, M. Journal of Computational and Theoretical Nanoscience .2013, 10 (10), 2473-2477
    CrossRef
  72. Monajjemi , M.;  Honaparvar , B.; Khalili Hadad ,B.; Ilkhani ,AR.; Mollaamin, F. African Journal of Pharmacy and Pharmacology .2010, 4(8), 521 -529
  73. Monajjemi, M.  Theor Chem Acc, 2015, 134:77 DOI 10.1007/s00214-015-1668-9
    CrossRef
  74. Monajjemi, MJournal of Molecular Modeling , 2014, 20, 2507
    CrossRef
  75. Monajjemi , M.; Honarparvar, B.; Monajemi, H.;. Journal of the Mexican Chemical Society, 2006, 50 (4), 143-148
  76. Monajjemi, M.; Khaleghian, M.; Mollaamin, F.   Molecular Simulation. 2010, 36, 11,  865–
  77. Ilkhani, Ali R.; Monajjemi, M. Computational and Theoretical Chemistry.2015 1074, 19–25
    CrossRef
  78. Monajjemi, M.  Biophysical Chemistry. 2015 207,114 –127
    CrossRef
  79. Monajjemi, M., Moniri, E., Panahi, H.A , Journal of Chemical and Engineering Data.2001, 1249-1254.
    CrossRef
  80. Mollaamin, F.; Najafpour, J.; Ghadami, S.; Ilkhani, A. R.; Akrami, M. S.; Monajjemi, M. Journal of Computational and Theoretical Nanoscience. 11 (5), 1290-1298
    CrossRef
  81. Monajjemi, M.; Ghiasi, R.; Ketabi, S.; Passdar, H.; Mollaamin, F. Journal of Chemical Research . 2004, 1, 11.
    CrossRef
  82. Monajjemi, M.; Heshmat, M.; Haeri, H.H. Biochemistry (Moscow).2006, 71, 113-122
    CrossRef
  83. Monajjemi, M.; Heshmat, M.; Aghaei, H.;Ahmadi, R.; Zare, K. Bulletin of the Chemical Society of Ethiopia. 2007, 21, 111–116
    CrossRef
  84. Monajjemi, M., Kharghanian, L., Khaleghian, M., Chegini, H. Fullerenes Nanotubes and Carbon Nanostructures.2014, 22, 8, 0.1080/1536383X.2012.717563
  85. Sarasia, E.M.; Afsharnezhad, S.; Honarparvar, B.; Mollaamin, F.; Monajjemi, M. Physics and Chemistry of Liquids. 2011, 49 (5), 561-571
    CrossRef
  86. Amiri, A.; Babaeie, F.; Monajjemi, M. Physics and Chemistry of Liquids. 2008, 46, 4, 379-389
    CrossRef
  87. Monajjemi, M.; Heshmat, M.; Haeri, H.H.; Kaveh, F. Russian Journal of Physical Chemistry A, 2006, 80, 7, 1061-1068
  88. Monajjemi, M.; Moniri, E.; Azizi, Z.; Ahmad Panahi, H. Russian Journal of Inorganic Chemistry. 2005, 50, 1, 40-44
  89. Jalilian,H.; Monajjemi, M. Japanese Journal of Applied Physics. 2015, 54, 8, 08510
  90. Mollaamin, F.; Monajjemi, M. Journal of Computational and Theoretical Nanoscience. 2015, 12, 6, 1030-1039
    CrossRef
  91. Felegari, Z.; Monajjemi, M. Journal of Theoretical and Computational Chemistry. 2015, 14, 3, 1550021
  92. Shojaee, S., Monajjemi, M. Journal of Computational and Theoretical Nanoscience. 2015, 12, 3, 449-458
    CrossRef
  93. Esmkhani, R.; Monajjemi, M. Journal of Computational and Theoretical Nanoscience. 2015. 12, 4, 652-659
    CrossRef
  94. Monajjemi, M., Seyedhosseini, M., Mousavi, M., Jamali, Z. Journal of Computational and Theoretical Nanoscience. 2015 , 23 (3), 239-244
  95. Ghiasi, R.; Monajjemi, M.; Mokarram, E.E.; Makkipour, P. Journal of Structural Chemistry. 2008, 4 , 4, 600-605
    CrossRef
  96. Mahdavian, L.; Monajjemi, M. Microelectronics Journal. 2010, 41(2-3), 142-149
    CrossRef
  97. Monajjemi, M.; Baie, M.T.; Mollaamin, F. Russian Chemical Bulletin.2010, 59, 5, 886-889
    CrossRef
  98. Bakhshi, K.; Mollaamin, F.; Monajjemi, M. Journal of Computational and Theoretical Nanoscience. 2011, 8, 4, 763-768
    CrossRef
  99. Darouie, M.; Afshar, S.; Zare, K., Monajjemi, M. journal of Experimental Nanoscience.2013, 8, 4, 451-461
  100. Amiri, A.; Monajjemi, M.; Zare, K.; Ketabi, S. Physics and Chemistry of Liquids. 2006, 44, 4, 449-456.
    CrossRef
  101. Zonouzi, R.;Khajeh, K.; Monajjemi, M.; Ghaemi, N. Journal of Microbiology and Biotechnology. 2013, 23, 1 ,7-14
    CrossRef
  102. Ali R. Ilkhani , Majid Monajjemi, Computational and Theoretical Chemistry 1074 (2015) 19–25
    CrossRef
  103. Tahan, A.; Mollaamin, F.;  Monajjemi, M. Russian Journal of Physical Chemistry A, 2009, 83 (4), 587-597
  104. Khalili Hadad, B.;  Mollaamin, F.;  Monajjemi, M, Russian Chemical Bulletin,2011, 60(2):233-236
    CrossRef
  105. Mollaamin, F.;  Monajjemi, M.;  Salemi, S.;  Baei, M.T. Fullerenes Nanotubes and Carbon Nanostructures, 2011, 19, 3, 182-196
    CrossRef
  106. Mollaamin, F.;  Shahani Pour.;  K., Shahani Pour, K.; ilkhani, A.R.;  Sheckari, Z., Monajjemi, M Russian Chemical Bulletin , 2012 , 61(12), 2193-2198
  107. Shoaei, S.M.; Aghaei, H.; Monajjemi, M.; Aghaei, M. Phosphorus, Sulfur and Silicon and the Related Elements. 2014, 189, 5; 652-660
    CrossRef
  108. Mehrzad, J., Monajjemi, M., Hashemi, M , Biochemistry (Moscow).2014 , 79 (1), 31-36
    CrossRef
  109. Moghaddam, N.A., Zadeh, M.S., Monajjemi, M. Journal of Computational and Theoretical Nanoscience , 2015 , 12,. 3, doi:10.1166/jctn.2015.3736
    CrossRef
  110. Joohari, S.; Monajjemi, M , Songklanakarin Journal of Science and Technology , 2015 , 37(3):327
  111. Rajaian, E., Monajjemi, M., Gholami, M.R, Journal of Chemical Research – Part S ,2002, 6, 1, 279-281
    CrossRef
  112. Ghassemzadeh, L., Monajjemi, M., Zare, K , Journal of Chemical Research – Part S, 2003, 4, 195-199
    CrossRef
  113. Monajjemi, M.; Lee, V.S.; Khaleghian, M.; B. Honarparvar, B.; F. Mollaamin, F. J. Phys.Chem C. 2010, 114, 15315
    CrossRef
  114. Monajjemi, M. Struct Chem. 2012, 23,551–580
    CrossRef
  115. Monajjemi, M.; Chegini, H.; Mollaamin, F.; Farahani, P.  Fullerenes, Nanotubes, and Carbon Nanostructures. 2011, 19, 469–482
    CrossRef
  116. Monajjemi, M .; Afsharnezhad ,S.; Jaafari , M.R.; Abdolahi ,T.; Nikosade ,A.; Monajemi ,H.; Russian Journal of physical chemistry A, 2007, 2,1956-1963
  117. Mehdizadeh Barforushi,M.; Safari,S.; Monajjemi,M. J. Comput. Theor. Nanosci.2015, 12, 3058-3065.
    CrossRef
  118. Mollaamin,F.; Ilkhani,A.; Sakhaei,N.; Bonsakhteh,B.; Faridchehr,A.; Tohidi,S.; Monajjemi, M. J. Comput. Theor. Nanosci. 2015,12, 3148-3154
    CrossRef
  119. Rahmati,H.; Monajjemi,M. J. Comput. Theor. Nanosci. 2015, 12, 3473-3481.
    CrossRef
  120. Roghieh Tarlani Bashiz,R.; Monajjemi,M. J. Comput. Theor. Nanosci.2015, 12, 3808-3816
    CrossRef
  121. Mehrabi Nejad,A.; Monajjemi,M. J. Comput. Theor. Nanosci. 2015, 12, 3902-3910.
    CrossRef
  122. Monajjemi,M.; Bagheri,S.; Moosavi,M.S.; Moradiyeh,N.; Zakeri,M.;Attarikhasraghi,N.; Saghayimarouf,N.; Niyatzadeh,G.; Shekarkhand,M.; Khalilimofrad,M.S.; Ahmadin,H.; Ahadi,M.; Molecules 2015, 20, 21636–21657; doi:10.3390/molecules201219769
    CrossRef
  123. Shabanzadeh,E.; Monajjemi,M.; J. Comput. Theor. Nanosci.2015, 12, 4076-4086
    CrossRef
  124. Elsagh,A.; Jalilian, H.; Kianpour, E.; Ghazi, Mokri, H.S.; Rajabzadeh,M.; Moosavi,M.S.; Ghaemi Amiri,F.; Majid Monajjemi ,M.; J. Comput. Theor. Nanosci. 2015, 12, 4211-4218.
    CrossRef
  125. Faridchehr, A.; Rustaiyan,A.; Monajjemi,M.; J. Comput. Theor. Nanosci.2015, 12, 4301-4314.
    CrossRef
  126. Tohidi, S.; Monajjemi, M.; Rustaiyan, A.; J. Comput. Theor. Nanosci. 2015, 12, 4345-4351
    CrossRef
  127. Ali Akbari Zadeh,M.; Lari,H.; Kharghanian,L.; Balali,E.; Khadivi,R.; Yahyaei,H.; Mollaamin,F.; Monajjemi, M.; J. Comput. Theor. Nanosci.2015, 12, 4358-4367.
    CrossRef
  128. Dezfooli,S.; Lari,H.; Balali,E.; Khadivi,R.; Farzi,F.; Moradiyeh,N.; Monajjemi,M.; J. Comput. Theor. Nanosci.2015, 12, 4478-4488 .
    CrossRef
  129. Jalilian,H.; Sayadian,M.; Elsagh,A.; Farzi,F.; Moradiyeh,N.; Samiei Soofi,N.; Khosravi,S.;. Mohammadian,N.T.; Monajjemi,M. J. Comput. Theor. Nanosci. 2015,12, 4785-4793.
    CrossRef
  130. Farzi,F.; Bagheri,S.; Rajabzadeh,M.; Sayadian,M.; Jalilian,H.; Moradiyeh,N.; Monajjemi, M.; J. Comput. Theor. Nanosci.2015, 12, 4862-4872.
    CrossRef
  131. Monajjemi,M.; Mohammadian, N.T, J. Comput. Theor. Nanosci. 2015, 12, 4895-4914
    CrossRef
  132. Monajjemi, M., Chahkandi, B. Journal of Molecular Structure: THEOCHEM, 2005, 714 (1), 28, 43-60.
    CrossRef
  133. Naghsh,F, Orient. J. Chem., 2015, 31(1)., 465-478
    CrossRef
  134. Chitsazan, A, Orient. J. Chem., 2015, 31(1)., 393-408
    CrossRef
  135. R.F.W. Bader, atoms in Molecule: A quantum Theory (Oxford Univ. press, Oxford, 1990).
  136. Savin, A., Jepsen,O., Flad, J., Andersen, OK, Preuss, H. & von Schering, HG. Angew. Chem. Int. Ed. Engl. 1992, 31, 187-188
    CrossRef
  137. Tsirelson and Stash, Chem. Phys. Lett. 2002, 351, 142
    CrossRef
  138. Schmider and Becke, J. Mol. Struct. (THEOCHEM),2000, 527, 51.
    CrossRef
  139. Heiko Jacobsen,Canadian Journal of Chemistry, 2009, 87(7): 965-973, 10.1139/V09-060
    CrossRef
  140. Sadegh,H.; Shahryari-ghoshekandi,R.; Agrawal, S.; Tyagi,I.; Asif,M, Gupta,V.K, Journal of Molecular Liquids, 2015, 206, 151-158 .
    CrossRef
  141. Gupta,V.K.; Tyagi,I.; Agrawal,S.; Sadegh,H.; Shahryari-ghoshekandi, R.; Yari,M.; Yousefi-nejat,O.; Journal of Molecular Liquids, 2015, 206, 126-136
    CrossRef
  142. Sadegh,H.; Shahryari-ghoshekandi,R.; Tyagi,I.; Agrawal,S.; Gupta,V.K, Journal of Molecular Liquids,2015, 207, 21-27.
    CrossRef
  143. Sadegh,H.: Zare,K.; Maazinejad,B.; Shahryari-ghoshekandi,R.; Tyagi,I.; Agrawal,S.; Gupta,V.K, Journal of Molecular Liquids, 2016,215, 221-228.
    CrossRef
  144. Zare,K.; Sadegh,H.; Shahryari-ghoshekandi,R.; Asif,M.; Tyagi,I.; Shilpi Agrawal, Gupta,V.K Journal of Molecular Liquids, 2016, 213, 345-350
    CrossRef


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.