ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039
     FacebookTwitterLinkedinMendeley

Density functional theory and QM/MM illustration of the behavior of B23N23 nano-cone: EPR & NMR investigation

Samira Bagheri*, Alireza Ziglari

Department of Chemistry, College of science, Central Tehran Branch, Islamic Azad University, Tehran, Iran

majid_chiang@yahoo.com

DOI : http://dx.doi.org/10.13005/ojc/310228

Article Publishing History
Article Received on :
Article Accepted on :
Article Published : 06 Jun 2015
Article Metrics
ABSTRACT:

In this work, the B23N23 nano-cone has been investigated using the DFT exchange-correlation functional of theory by electron paramagnetic resonance of EPR2 and EPR3 basis sets. The results of ab initio and QM/MM calculations of  NMR chemical shift values of σiso, σaniso, Δσ, δ and η parameters of   with GIAO and CSGT approximations of B23N23 have been obtained. The relative energies have been compared between EPR2 and EPR3 methods. Also, Atoms charge transfers have considered to full alternation B and N atoms in B23N23 nano-cone. The stability of B23N23 was confirmed in a theoretical work based on a combination of density functional theory and the temperature effect on stability have been studied. The results, obtained of EPR2 and EPR3 levels with both of approximation were excellent in agreement.

KEYWORDS:

chemical shift; Boron nitride; nano-cone; ab initio calculations; QM/MM

Download this article as: 

Copy the following to cite this article:

Bagheri S, Ziglari A. Density functional theory and QM/MM illustration of the behavior of B23N23 nano-cone: EPR & NMR investigation. Orient J Chem 2015;31(2).


Copy the following to cite this URL:

Bagheri S, Ziglari A. Density functional theory and QM/MM illustration of the behavior of B23N23 nano-cone: EPR & NMR investigation. Available from: http://www.orientjchem.org/?p=9110


Introduction

The carbon nanotube (CNT) is a representative nano-material. CNT is a cylindrically shaped carbon material with a nano-metric-level diameter [1-20].

Its structure, which is in the form of a hexagonal mesh, resembles a graphite sheet and it carries a carbon atom located on the vertex of each mesh. The sheet has rolled and its two edges have connected seamlessly [9-15].

Although it is a commonplace material using in pencil leads, its unique structure causes it to present characteristics that had not found with any other materials. CNT can be classified into single-wall CNT, double-wall CNT and multi-wall CNT according to the number of layers of the rolled graphite [16-20].

The type attracting most attention is the single-wall CNT, which has a diameter deserving the name of “nanotube” of 0.4 to 2 nanometers. The length is usually in the order of microns, but single-wall CNT with a length in the order of centimeters has recently released [18-25].

CNT can be classified into single-wall CNT, double-wall CNT and multi-wall CNT according to the number of layers of the rolled graphite. The type attracting most attention is the single-wall CNT, which has a diameter deserving the name of “nanotube” of 0.4 to 2 nanometers [20-26].

The length is usually in the order of microns, but single-wall CNT with a length about centimeters have recently released. The extremities of the CNT have usually closed with lids of the graphite sheet [21-30].

The lids consist of hexagonal crystalline structures (six-membered ring structures) and a total of six pentagonal structures (five-membered ring structures) placed here and there in the hexagonal structure [22-35]. The first report by Iijima was on the multi wall form, coaxial carbon cylinders with a few tens of nanometers in outer diameter [25-40]. Two years later single walled nanotubes were reported [8-45]. SWCNTs have considered as the leading candidate for nano-device applications because of their one-dimensional electronic bond structure, molecular size, and biocompatibility, controllable property of conducting electrical current and reversible response to biological reagents hence SWCNTs make possible bonding to polymers and biological systems such as DNA and carbohydrates [30-50].

boron nitride nanotube (BNNTs) have attracted much interests due to their large gap semi conducting character[41-55].Boron nitride (BN) is a structural existing  in cubic (diamond-like), hexagonal (graphite-like), turbo static, and amorphous forms .these compounds  have been produced by a variety of methods, such as arc melting[50-59], high temperature chemical reaction[44-60], carbon nanotube  templates[50-65], and laser ablating[52-64] The most attention has been focused on the development of new methods for the production of nanotube  and inorganic fullerene of other materials. Recently. Lauded and Y. Matsui showed that a non-ablative laser heating method could produce very long BN nanotube assembled in bundles

In addition, theoretical calculations have been described the possible existence of small BN clusters. Jensen and Toftlund [58-70] performed ab initio calculations for B12N12 clusters in different geometries. Based on density functional calculations it has also been proposed that other nanotube could be synthesized. [60-75]

Theoretical studies have been performed for fullerene-like B12N12 clusters,[65-90] in which it has been found that a structure built from squares and hexagons is more stable than those built from pentagons and hexagons. This is because in the second case less stable B-B and N-N bonds are formed.

The most stable B12N12 structure is built from six squares and eight hexagons. [70-99]

In this work, we focused on B23N23 nano-con. Our aim was to obtain the global minimum energy structure. For this structure, we use the hybrid B3LYP exchange-correlation functional within density functional theory. Primary, structure optimization calculated and then Nuclear Magnetic Resonance (NMR) parameters by density Functional Theory (DFT) method calculated on the optimized structure. Isotropic chemical shielding, anisotropic chemical shielding parameters at all of the atoms nuclei are presented in Table 1. And also, Thermodynamic Properties have been considered in Table 2

Table1 .NMR Parameters of B23N23 for 5 atoms of Nitrogen and 5 atoms of Boron with two level of theory

 

EPR2

 

EPR3

 

atom

 

 

 

 

 

 

 

 

 

B4

161.42

85.2

-90.79

-60.5

0.87

151.4

90.8

-92.5

-61.7

0.9

N30

84.5

153.2

153.21

102.1

0.078

75.3

166.8

166.8

111.2

0.06

B3

30.4

333.5

333.5

222.3

0.0589

11.9

351.63

351.6

234.4

0.03

N25

82.30

308.1

308.17

205.4

0.562

66.1

321.7

321.7

214.5

0.47

B13

82.3

308.1

308.1

205.4

0.562

66.17

321.7

321.7

214.5

0.48

N39

161.4

85.1

-90.78

-60.5

0.8

151.4

90.8

-95.5

-64.6

0.9

B21

76.5

49.9

-54.7

-36.5

0.8

67.9

56.9

-63.0

-42.0

0.8

N43

83.7

120.0

120.0

80.02

0.6

63.4

128.8

128.8

85.9

0.73

B22

-28.8

196.5

-275.9

-183.9

0.42

-27.8

194.3

-246.96

-164.6

0.66

N45

71.9

57.8

-67.9

-45.2

0.70

63.7

61.6

-72.9

-48.6

0.6

 

Table2. Optimized structure parameters of B23N23. For top and down side of Nano-cone

bond-angle

EPR2

EPR3

 

bond -length

EPR2

EPR3

N46-B23-N45

117.21

117.3

 

B4-N30

1.2

1.15

N29-B3-N25

116.98

117.0.

 

B13-N39

1.41

1.35

B22-N45-B23

117.35

117.500

 

B3-N35

1.39

1.36

B4-N26-B5

121.50

121.2

 

B21-N43

1.38

1.35

 

DFT calculations of B23N23

B23N23 clusters have been studied using the hybrid B3LYP density functional and (EPR and EPR2) methods. All Density Functional Theory (DFT) quantum calculations were performed using Gaussian 98 program package on structure of boron-nitride nano-cone.

The structure first optimized with Becke3, Lee-Yang-Parr (B3LYP) method and EPRandEPR2 basis sets including QM/MM calculations.

Nuclear Magnetic Resonance (NMR) parameters at all of the nuclei optimized structure calculated by B3LYP method and EPR2 and EPR3 basis sets. The results are listed in table1-4 and Figures1-5.

 Fig.1.Optimized Structures of B23N23 nano-cone

Figure1: Optimized Structures of B23N23 nano-cone

 



Click here to View figure

 

Fig2: contour map of electron density with horizontal projection for B23N23

Figure2: contour map of electron density with horizontal projection for B23N23

 

Click here to View figure

 

Fig3.Density of state DOS for B23N23

Figure3: Density of state DOS for B23N23


Click here to View figure

 

Fig 4, The B4 and N30 are in the top and B21-N43,B22-N45, B3-N25and B13-N39 are located in the other side Figure4: The B4 and N30 are in the top and B21-N43,B22-N45, B3-N25and B13-N39 are located in the other side 



Click here to View figure

 

Table3 .Thermochemistry data for Gibbs energy and enthalpies

 

EPR2

EPR3

T(K)

ΔG( kcal/mol )

ΔG( kcal/mol )

294

0

0

296

-0.21

-0.22

298

-0.42

-0.43

300

-0.65

-0.67

302

-0.81

-0.83

304

-0.95

-0.99

 

 

 

 

ΔH( kcal/mol )

ΔH( kcal/mol )

294

0

0

296

0.09

0.09

298

0.21

0.22

300

0.29

0.29

302

0.39

0.39

304

0.49

0.49

 

Table4. The diagonal elements are the sum of corresponding row elements Mulliken bond order matrix

1                2                3               4             5

1    1.81981537   -0.06694936    0.00121123    0.00004207   -0.06665488

2    -0.06694936    1.91200331   -0.06487913    0.00000003    0.00001287

3      0.00121123   -0.06487913    1.58274924    0.00000000    0.00000337

4     0.00004207    0.00000003    0.00000000    1.95447741   -0.05051190

5   -0.06665488    0.00001287    0.00000337   -0.05051190    1.71119373

6               7                8              9               10

6    -0.04962142   -0.00009760    0.00017808    0.00012890   -0.06624748

7   -0.06510418   -0.06400943   -0.04696122    0.00000090    0.00007086

8    0.00022173   -0.00151502   -0.02522389    0.00000000    0.00000375

9    0.00003142    0.00000088    0.00000001   -0.05619024   -0.06823134

10   -0.00121458    0.00000252    0.00000013   -0.05051190   -0.04415468

11              12             13             14              15

11     1.81981537   -0.06510418    0.00121123   -0.00138446   -0.06100965

12    -0.06510418    1.83299950   -0.04696122    0.00002450   -0.00005600

13    0.00121123   -0.04696122    1.58274924   -0.00000007    0.00000536

14    -0.00138446    0.00002450   -0.00000007    1.78132197   -0.05101726

15    -0.06100965   -0.00005600    0.00000536   -0.05101726    1.78132197

16            17            18            19            20

16   -0.06087757   -0.00224289    0.00006269   -0.00136424   -0.06758153

17   -0.06694936   -0.06400943   -0.06487913    0.00000444   -0.00006233

18    0.00015848    0.00004436   -0.00000061   -0.06758153   -0.00136424

19   -0.00359868    0.00006229    0.00000117   -0.06925424   -0.06925424

20   -0.00000320    0.00001945    0.00000336    0.00003111   -0.00003064

21            22            23            24            25

21    0.00000544    0.00000333    0.00000937    0.00000008    0.00000000

22    0.00000544   -0.00004962    0.00000937    0.00000008   -0.00000003

23   -0.00000095    0.00001945   -0.00000042    0.00000087    0.00000018

24   -0.03414025    0.78789516   -0.00080799    0.00000440   -0.00002473

25   -0.00003615   -0.03664212   -0.00303809    0.00000000   -0.00000000

26            27            28            29            30

26   -0.02632326   -0.00002370   -0.00000001   -0.05376705    0.69652041

27    0.76580841   -0.02960282   -0.00003909   -0.00416905   -0.04129322

28    0.77784111    0.77226091   -0.03842573    0.00000845    0.00063358

29    0.00022641    0.72900503    0.83895375    0.00000000   -0.00000010

30   -0.00013587   -0.00000003   -0.00000000    0.59415467   -0.05434021

 

31            32            33            34            35

31   -0.00430966   -0.00000409   -0.00000001    0.70760248    0.80802830

32    0.76580841    0.00062416   -0.00003909   -0.00416905    0.76218702

33   -0.03414025   -0.00297299   -0.00080799    0.00000440    0.00082141

34    0.00022641   -0.03306726    0.83895375    0.00000000    0.00000194

35   -0.00430966   -0.00003206   -0.00000001    0.70760248   -0.06869552

36            37            38            39            40

36    0.00066316    0.00000236   -0.00000003   -0.02482059   -0.00403887

37   -0.00650259    0.00004714   -0.00000145    0.00118109   -0.03070260

38   -0.00002536    0.00000670    0.00002968    0.00000006   -0.00002011

39   -0.00003615   -0.00002477   -0.00303809    0.00000000   -0.00000021

40   -0.00650259   -0.00117557   -0.00000145    0.00118109   -0.00002055

41            42            43            44            45

41    0.00000637    0.00006459   -0.00000009   -0.00001957   -0.00000225

42    0.00000637   -0.00000187   -0.00000009   -0.00001957   -0.00002661

43   -0.00000004   -0.00000002   -0.00000004   -0.00000000   -0.00000001

44   -0.00002536   -0.00163848    0.00002968    0.00000006   -0.00000014

45   -0.00000004   -0.00000001   -0.00000004   -0.00000000   -0.00000000

46

46   -0.00000001   -0.00000006    0.00000001   -0.00000001   -0.00000000

 

The energy differences have been compared with those obtained within EPR2 and EPR3. The NMR of paramagnetic compounds (compounds possessing unpaired electron) play an important role in different application of chemistry and biochemistry. The stability ofB23N23 was confirmed in a theoretical work based on a density functional calculation. Geometry optimizations and energy calculations on the boron nitrides B23N23   was carried out using the B3LYP method. The major result is that boron nitride cages are more stable than rings if at least two of the six four- member rings are isolated by hexagons.

NMR

The NMR chemical shift d is a parameter that use for recognizing magnetically in equivalent nuclei in a molecule. The use of density functional theory (DFT) to nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopes is a new and notable subject. Today NMR methods are powerful tools in chemistry and biochemistry because of the NMR chemical shifts. In liquid, or gas, the molecules are freely tumbling so one does comprehend an average chemical shift (isotropic chemical shift). The quantity in quantum mechanics is depended to the NMR chemical shift. The shielding is determined as the mixed second derivative of the energy with consideration to magnetic moment of the nucleus and the strength of the used magnetic field. It is solved through the second-order perturbation theory with the Zee man Hamiltonian.

The first order contribution is called diamagnetic while the second order (which requires knowledge of excited electronic states) is termed paramagnetic. The calculation methods employed are the ab-initio (from first principles) Hartee-Fock or density functional calculations. The first method solves the electronic Schrödinger equation in the absence of any magnetic field. The density functional method was allowed to change with the applied of a magnetic moment and a static external magnetic field. The zero order and first order density matrices are used to obtain the diamagnetic and paramagnetic terms, respectively. The integrity of these calculations depends on the level of theory used, the basis set employed and the structure of molecule. Gaussian basis sets are employed as the basis functions to match the electronic orbital in a molecule.

For use, the ab-initio packages it is necessary that the molecular geometry be defined.

This work presented the results of B and N NMR investigations on the B23N23 nanocone obtained via Density functional theory.

Results

On the basis of the WU Haishun et al studies into (BN)n cages, it is found that among several isomers of these structures the isomers without direct B —B and N —N bonding are more stable. Then, in this work, we have investigated on   B23N23 nano-cone.

The B-N bond length at the peak of nano-cone is short to compare to another bonds too in this optimized structure, atomic charges are notable. The charge distribution values of are in agreement with structure coordinate.

Atom charge transfers have considered to full alternation B and N atoms in B23N23 nano-cone. At direct interactions between indicated atoms in EPR3 level have shown that the charges of atoms at ring had the most charge distribution with GIAO and CSGT approximates.

In addition, Atom charge transfers in nitrogen atoms had the same behavior as it performed in tables. This is notable that the atom charge transfer values in top at nano-cone had the close behavior in EPR2 and EPR3 levels.

The agreement between the calculated values Atom charge transfers for EPR2 and EPR3 levels with GIAO and CSGT approximations were remarkably good.

NMR results

The GIAO and CSGT approximations of NMR calculations for Structural study of the B23N23 cluster to obtain nuclei Magnetic Resonance Parameters via Density Functional Theory method were performed at the EPR2 and EPR3 levels and reported in Table1 .the CSGT results have confirm the GIAO results. The agreement between the observed and calculated values of the shielding anisotropies and asymmetries for both EPR2 and EPR3 were remarkably good.

The results of ab initio calculations of  NMR chemical shift values of σiso, σaniso, Δσ, δ and η parameters of   with GIAO and CSGT approximations of B23N23 have been obtained and results have given by table1.

Calculated isotropic chemical shielding parameters of nitrogen Nuclei have almost similar behaviors and these atoms have maximum values to compare to another atom. In table 1, we have reported the NMR parameters of in EPR2 level and in EPR3 level and also these parameters with CSGT and GIAO approximation are calculated. The same process has been seen in CSGT approximation too.  Calculated anisotropic shielding in nitrogen has the same behavior as it performed in table1

It has been shown that the behavior of chemical shift tensor components (isotropic and anisotropic) have depended on the Geometry coordinates of BN nanotube.By given data, we will be able to obtain deeper insight of induced effects of bonding by comparing the calculations.

Thermodynamic Properties

According to the thermochemical calculations at the B3LYP/EPR2 and B3LYP/EPR3 levels of theory, obtaining thermochemical functions such as ΔH, ΔS and ΔG.

Also, in this work the changes  of Gibbs free energy and Enthalpy via temperature  have considered and have shown that with increasing of temperature ,the system has been stabilized according to the (Eq.1) as follows .ΔG= ΔH –TΔS :  Eq.1.Gibbs equation

Conclusions

The hybrid B3LYP density functional and (EPR2 and EPR3) methods has been used to characterize the geometry of a B23N23 nanocone. Optimized structures, relative stability, nuclear dipole moment and NMR parameters of system including total atomic charges, shielding isotropies, shielding anisotropies chemical shift and asymmetry of considered system have been compared and results have been in good agreement with the experimental data.

References

  1. Massimo, Fusaro .:Quantum Matter,2014, 3, 481-487
  2. Micheal Arockiaraj , Rev. Theor. Sci. 2014, 2, 261-273
  3. Martin Bohlén .; Kim Bolton ,Quantum Matter, 2014, 3, 339-343
  4. Monajjemi, M.; Baei, M.T.; Mollaamin, F. Russian Journal of Inorganic Chemistry. 2008, 53 (9), 1430-1437
  5. Monajjemi, M.; Rajaeian, E.; Mollaamin, F.; Naderi, F.; Saki, S. Physics and Chemistry of Liquids. 2008, 46 (3), 299-306
  6. Monajjemi, M.; Seyed Hosseini, M. Journal of Computational and Theoretical Nanoscience .2013 ,10 (10), 2473-2477
  7. Yahyaei ,H.; Monajjemi, M. Fullerenes, Nanotubes, and Carbon Nanostructures.2014, 22(4), 346–361
  8. Monajjemi, M .; Jafari Azan, M.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures.2013, 21(6), 503–515
  9. Bhupesh, Bishnoi .; Bahniman ,Ghosh .Quantum Matter.2014, 3, 469-475
  10. Sule, Celasun , Rev. Theor. Sci.2013, 1, 319-343
  11. Akshaykumar, Salimath .; Bahniman, Ghosh, Quantum Matter, 2014, 3, 72-77
  12. Nafisi, S.; Monajemi, M.; Ebrahimi, S.  Journal of Molecular Structure. 2004,705 (1-3) 35-39
  13. Monajjemi , M.; Baheri ,H.; Mollaamin ,F.  Journal of Structural Chemistry.2011 52(1), 54-59
  14. Monajjemi, M.; Seyed Hosseini, M.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures. 2013, 21, 381–393
  15. Monajjemi, M.;  Boggs, J.E.  J. Phys. Chem. A, 2013, 117, 1670 −1684
  16. Davide Fiscaletti and Amrit Sorli ,Quantum Matter,2014 3, 200-214
  17. Monajjemi , M.;  Honaparvar , B.; Khalili Hadad ,B.; Ilkhani ,AR.; Mollaamin, F. Afr. J. Pharm. Pharmacol .2010, 4 (8), 521-529
  18. Monajjemi, M. Chemical Physics. 2013, 425, 29-45
  19. Bjürn Piglosiewicz, Jan Vogelsang.;Slawa Schmidt.; Doo Jae Park.; Petra Groß, .; Christoph Lienau ,Quantum Matter,2014 ,3, 297-306
  20. A. M. Ilyin , Quantum Matter 2013,2, 205-208
  21. Fazaeli ,R.; Monajjemi ,M.; Ataherian ,F.; Zare, K. Journal of Molecular Structure: THEOCHEM.2002, 581 (1), 51-58
  22. Monajjemi, M.;  Mollaamin, F, J Clust Sci,  22(2011)673.
  23. Medhat Ibrahim and Hanan Elhaes ,Rev. Theor. Sci. 2013, 1, 368-376
  24. Anurag Srivastava.; Nileshi Saraf.; A. K. Nagawat , Quantum Matter,2013, 2, 401-407
  25. IIJIMA Sumio.; YUDASAKA Masako.; NIHEY Fumiyuki.; NEC TECHNICAL JOURNAL,2007, 2,1,
  26. S. Iijima, Nature,1991, 354, 56.
  27. S. Iijima and T. Ichihasi, Nature,1993,363, 603
  28. D. S. Bethune.;C. H. Kiang.; M. S. deVries.; G. Gorman, R. Savoy.; J. Vazques.; R. Beyers, Nature ,1993, 363, 605
  29. T. Ramanathan.; F. T. Fisher.; R. S. Ruoff and L. C. Brinson, Chem mater,2005  17, 1290
  30. Monajjemi, M .; Aghaie , H.; Naderi , F. Biochemistry (Moscow).2007, 72 (6), 652-657
  31. Monajjemi, M.  Journal of Molecular Modeling , 2014, 20, 2507
  32. Davide Fiscaletti,Rev. Theor. Sci.2013 1, 103-144
  33. Monajjemi , M.; Chahkandi ,B.;  Zare,K.; Amiri, A. Biochemistry (Moscow),2005 70 (3), 366-376
  34. J.-Y. Guo, C.-X. Xu, F.-Y. Sheng, Z.-L. Jin, Z.-L. Shi, J. Dai, and Z.-H. Li Quantum Matter,2013 2, 181-186
  35. Monajjemi, M .; Afsharnezhad ,S.; Jaafari , M.R.; Abdolahi ,T.; Nikosade ,A.; Monajemi ,H.; Russian Journal of physical chemistry A, 2007, 2,1956-1963
  36. Monajjemi, M.;  Khaleghian, M,  Journal of Cluster Science. 2011, 22 ( 4 ), 673-692
  37. Mollaamin , F.; Monajjemi , M , Journal of Computational and Theoretical Nanoscience. 2012, 9 (4) 597-601
  38. Monajjemi, M. Struct. Chem, 2012, 23 551.
  39. Mollaamin, F.; Gharibe, S.; Monajjemi, M. Int. J. Phy. Sci , 2011,6, 1496-1500
  40. Monajjemi, M .;  Faham, R.;  Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures , 2012 20, 163–169
  41. Monajjemi, M.; Khaleghian, M.; Tadayonpour, N.; Mollaamin, F. International Journal of Nanoscience, 2010, 9 (05), 517-529
  42. Mollaamin , F .; Najafi ,F.; Khaleghian, M.;  Khalili Hadad, B.; Monajjemi ,M.  Fullerenes, Nanotubes, and Carbon Nanostructures,2011 19, 653–67
  43. Monajjemi, M.;  Chegini , H. ; Mollaamin , F. ; Farahani ,P, Fullerenes, Nanotubes, and Carbon Nanostructures.2011,19, 469–482
  44. Monajjemi, M.; Yamola ,H.; Mollaamin,F. Fullerenes, Nanotubes, and Carbon Nanostructures, 2014, 22, 595–603
  45. Monajjemi, M.;  Heshmata, M.;  Haeri, HH , Biochemistry (Moscow),2006, 71 (1), S113-S122
  46. Xinjun Wang.; Yi Xie and Qixun Guo  , CHEM. COMMUN. 2003, 2688–2689
  47. A. Rubio.; J.L. Corkill.; M.L. Cohen.; Phys. Rev. B ,1994, 49, 5081
  48. X. Blasé.; A. Rubio.; S.G. Louie.; M.L. Cohen.; Europhys. Lett, 1994.28, 335.
  49. N.G. Chopra.; J. Luyken.; K. Cherry.; V.H. Crespi.; M.L. Cohen,S.G. Louie.; A. Zettl, Science.1995 ,  269, 966
  50. N.G. Chopra.;A. Zettl.;Solid State Commun.1998 ,105, 297
  51. J. Cumings.; A. Zettl, Solid State Commun.2004, 129, 661
  52. R. Ma.; Y. Bando.; H. Zhu.; T. Sato, C. Xu, D. Wu, J. Am.Chem. Soc.2002, 124, 7672,
  53. L. Wirtz, A. Rubio, R.A. de la Concha, A. Loiseau, Phys. Rev.B 68 ,045425,(2003).
  54. P.W. Fowler, K.M. Rogers, G. Seifert, M. Terrones, and H. Terrones, Chem. Phys. Lett. 1999, 299, 359
  55. Monajjemi, M .; Falahati, M.; Mollaamin, F.; Ionics, 2013 , 19, 155–164
  56. Monajjemi , M.; Heshmat ,M.; Aghaei , H.; Ahmadi , R.; Zare,K. Bulletin of the Chemical Society of Ethiopia, 2007, 21 (1)
  57. Monajjemi , M.;  Lee, V.S. ; Khaleghian, M.;  B. Honarparvar, B.;  F. Mollaamin, F, J. Phys.Chem. C. 2010, 114 (2010) 15315
  58. A. Rubio, J.L. Corkill, M.L. Cohen, Phys. Rev. B.1994, 49,5081
  59. X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Europhys. Lett. 1994, 28 335.
  60. N.G. Chopra, J. Luyken, K. Cherry, V.H. Crespi, M.L. Cohen,S.G. Louie, A. Zettl, Science ,1995, 269, 966.
  61. O.R. Lourie, C.R. Jones, B.M. Bartlett, P.C. Gibbons, R.S. Ruoff,W.E. Buhro, Chem. Mater.2000, 12 ,1808;
  62. R. Ma, Y. Bando, T.Sato, Chem. Phys. Lett.2001, 337 ,61.
  63. W. Han, Y. Bando.; K. Kurashima.; T. Sato, Appl. Phys. Lett.1998, 73, 3085;
  64. D. Golberg.; Y. Bando.; W. Han.; K. Kurashima.;T. Sato, Chem. Phys. Lett.1999. 308 337 D. Golberg, Y. Bando, K.Kurashima, T. Sato, Chem. Phys. Lett.2000 323) 185.
  65. (a) D. Golberg.; Y. Bando.; M. Eremets.; K. Takemura.; K. Kurashima.;H.Yusa, Appl. Phys. Lett.1996 ,69, 2045
  66. D.P. Yu, X.S. Sun, C.S. Lee, I. Bello, S.T. Lee, H.D. Gu, K.M. Leung, G.W. Zhou, Z.F. Dong.; Z. Zhang.; Appl. Phys. Lett.1998, 72 , 1966.
  67. F.Jensen.; H.Toftlund, Chem. Phys. Lett.1993, 201,89 , 94
  68. Monajjemi, M .; Sobhanmanesh, A .; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures,2013, 21 47–63
  69. Monajjemi ,M.;  Karachi ,N.; Mollaamin, F.  Fullerenes, Nanotubes, and Carbon Nanostructures, ,2014, 22: 643–662
  70. Monajjemi, M.; Mahdavian, L.;  Mollaamin, F.: Bull .Chem.Soc.Ethiop ,2008, 22(2),1-10.
  71. V. Tozzini.; F. Buda.; A. Fasolino.; physical review letters ,2000,21,85
  72. G. Seifert.; P. W. Fowler.; Mitchell, D.; Porezag, D.; Frauenheim, Th. Chem. Phys. Lett. 1997, 268, 252
  73. Mollaamin ,F.;  Baei, MT.;  Monajjemi, M.; Zhiani , R.;  Honarparvar , B.; Russian Journal of Physical Chemistry A, Focus on Chemistry,2008, 82 (13), 2354-2361
  74. Monajjemi, M.; Ghiasi, R. ;Ketabi, S. Journal of Chemical Research.2004, 1: 11-18
  75. Mahdavian,L.;  Monajjemi, M.; Mangkorntong ,N.Fullerenes, Nanotubes and Carbon Nanostructures,2009, 17 (5), 484-495
  76. Jon M. Matxain.; Jesus M. Ugalde.; M. D. Towler.; and R. J. Needs.; J. Phys. Chem. A 2003, 107, 10004-10010
  77. WU Haishun.;XU Xiaohong,; JIAO Haijun,
  78. ZHANG Fuqiang .; JIA Jianfeng. Chinese Science Bulletin. 2003, 48, 11 1102 1107
  79. Monajjemi, M .; Ketabi ,S.; Amiri, A. Russian Journal of Physical Chemistry , 2006, 80 (1), S55-S62
  80. M. Monajjemi .; Robert Wayne Jr, J.E. Boggs, Chemical. Physics. 433 (2014) 1-11
  81. Jon M. Matxain.; Jesus M. Ugalde.; M. D. Towler.; and R. J. Needs.; J. Phys. Chem. A 2003, 107, 10004-10010
  82. WU Haishun.; XU iaohong.; JIAO Haijun, ZHANG Fuqiang .; JIA Jianfeng Chinese Science Bulletin 2003, 48 (11),  1102 1107
  83. Monajjemi , M.; Honarparvar, B.; Monajemi, H.;. Journal of the Mexican Chemical Society, 2006, 50 (4), 143-148
  84. Monajjemi ,M.; Mollaamin ,F. Journal of Computational and Theoretical Nanoscience,2012 ,9 (12) 2208-2214
  85. Monajjemi, M.; Mahdavian, L.; Mollaamin, F.; Honarparvar, B. Fullerenes, Nanotubes and Carbon Nanostructures, 2010, 18, 45–55
  86. Friedrich, B.; J.D. Weinstein.; R. Decarvalho .; J.M. Doyle.;. Trap. J. Chem. Phys. 1999, 110,2376-2383.
  87. Ramsay, N.E.; Magnetic Shilding of Nuclei. J. Phys. Rev.1950, 78, 699-703.
  88. Frischend, M.J.; J.B. Foresman, 1995. Gaussian 94 user’ reference (Gaussian, Inc., Pittsburgh).
  89. Ghalandari, B.; Monajjemi, M.; Mollaamin, F.; Journal of Computational and Theoretical Nanoscience, 2011 8, 1212–1219
  90. Monajjemi , M.; Khosravi , M.;  Honarparvar, B.; Mollaamin, F.; International Journal of Quantum Chemistry, 2011, 111, 2771–2777
  91. Monajjemi, M.; Rajaeian, E.;  Mollaamin, F. Physics and Chemistry of Liquids,2008, 46 299.
  92. Tahan, A .; Monajjemi, M. Acta Biotheor, 2011, 59, 291–312
  93. Monajjemi, M.; Farahani, N.; Mollaamin, F.  Physics and Chemistry of Liquids, 2012, 50(2) 161–172
  94. Monajjemi, M.;  Razavian, M.H.;  Mollaamin,F.;  Naderi,F.;  Honarparvar,B.; Russian Journal of Physical Chemistry A , 2008 , 82 (13),  2277-2285
  95. Mollaamin , F.;  Varmaghani , Z.;  Monajjemi , M, Physics and Chemistry of Liquids. 2011, 49 318
  96. Monajjemi, M.; Honarparvar, B.; H. Haeri, H.; Heshmat, M.; Russian Journal of Physical Chemistry C, 2008, 80(1),S40-S44.
  97. Cheeseman, J.R.; M.J. Frisch.; F.J. Devlin .;P.J.Stephens, Chemical Physics Letters, 1996,252 (3-4), 211-220.
  98. Pisani, C.;S. Casassa .; P. Ugliengo, Chemical Physics Letter. 1996, 253 (3-4) 201-208.
  99. Dresselhaus, M.; Dresselhaus, G.; Eklund, P. C., Science of Fullerenes and Carbon Nanotubes, San Diego: Academic Press, 1996, 109, 175.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.