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ABSTARCT

 This comprehensive article on epoxidation reactions provides a thorough understanding of the 
various types of reactions, reagents used, applications, advantages, and disadvantages associated 
with this important class of reactions. It also highlights recent advances in greener and more 
sustainable methods and their potential for future applications in various fields of chemistry. By reading 
this article, researchers and students alike can gain a deeper understanding of the mechanisms and 
applications of epoxidation reactions and their importance in organic synthesis, polymer chemistry, 
and medicinal chemistry. The article also highlights the potential for future developments in this area, 
making it a valuable resource for those interested in exploring new synthetic strategies. In addition, 
the article provides insights into the advantages and disadvantages of epoxidation reactions, helping 
researchers and students to carefully consider their selection of synthetic strategies for specific 
applications. The information on green chemistry and catalysis provides an exciting opportunity for 
the development of novel and more sustainable methods, promoting the continued use of epoxidation 
reactions in various fields of chemistry. Overall, this article serves as an essential resource for 
those interested in epoxidation reactions and their applications, providing a detailed understanding 
of the mechanisms involved and the potential for future developments in this area. The information 
provided in this article can be applied to various research projects and industrial processes, making 
it a valuable resource for both academia and industry.

Keywords: Asymmetric epoxidation, Chiral epoxides, Metal-catalyzed epoxidation, 
Green chemistry, Bio-based polymers.

INTRODUCTION

 Epoxidation is a chemical reaction that 
involves the formation of an epoxide, a three-
membered cyclic ether, from a double bond. It is 
a significant reaction in organic chemistry due to 

its synthetic versatility and biological importance. 
Epoxides are found in a wide range of natural and 
synthetic compounds, including pharmaceuticals, 
agrochemicals, and polymers. They also play crucial 
roles in various industrial applications, such as 
adhesives, coatings, and composites.1,2
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 The most common method for the 
epoxidation of alkenes is the reaction with a peracid, 
such as meta-chloroperbenzoic acid (MCPBA), 
peracetic acid, and performic acid. Peracids are 
strong oxidizing agents that can transfer an oxygen 
atom to a double bond, resulting in the formation 
of an epoxide. The reaction proceeds through a 
cyclic intermediate, which is formed by the attack 
of the peracid on the alkene. The intermediate then 
collapses to form the epoxide and the corresponding 
carboxylic acid.3–6

 Another method for the epoxidation of 
alkenes is the reaction with an oxone, a triple salt of 
potassium peroxymonosulfate, which is a powerful 
oxidizing agent. The reaction proceeds through 
the formation of an oxirane intermediate, which is 
subsequently hydrolyzed to form the epoxide. The 
use of oxone has several advantages over peracids, 
including its availability, low cost, and environmental 
friendliness.5,7,8

 Metal-catalyzed epoxidation is another 
commonly used method for the epoxidation of 
alkenes. This method involves the use of metal 
complexes, such as titanium, molybdenum, and 
tungsten, as catalysts to activate the peroxide 
reagent. Metal-catalyzed epoxidation has several 
advantages over the traditional peracid and oxone 
methods, including the ability to perform the reaction 
under milder conditions and the ability to selectively 
epoxidize certain types of alkenes.9,10

 Asymmetric epoxidation is a type of 
epoxidation that involves the formation of a chiral 
epoxide from an achiral alkene. This reaction is of 
great importance in the synthesis of enantiopure 
compounds, which are critical in the pharmaceutical 
and agrochemical industries. Asymmetric epoxidation 
can be achieved using a chiral catalyst, such as a 
chiral metal complex or an organocatalyst.11–14

 In addition to the epoxidation of alkenes, 

other types of epoxidation reactions exist. For 
example, the epoxidation of carbonyl compounds 
involves the formation of an oxirane intermediate 
from a carbonyl group, which can then be hydrolyzed 
to form an epoxide. This reaction is commonly 
used in the synthesis of epoxide-containing natural 
products.15

 In summary, epoxidation is a fundamental 
organic reaction with wide applications in synthesizing 
diverse natural and synthetic compounds. Common 
methods include peracid, oxone, and metal-
catalyzed epoxidation for alkenes, while asymmetric 
epoxidation is crucial for enantiopure compound 
synthesis. Ongoing research focuses on developing 
new epoxidation methods and catalysts, reflecting 
the active pursuit of advancements in organic 
chemistry.3,5,16

Types of Epoxidation
 Epoxidation is a chemical reaction that 
involves the formation of an epoxide, which is a 
three-membered cyclic ether, from a double bond. 
Epoxides are important synthetic intermediates and 
are widely used in the preparation of pharmaceuticals, 
agrochemicals, and materials. There are several 
types of epoxidation reactions, which differ in their 
reagents, catalysts, and reaction mechanisms.

Peroxyacid Epoxidation
 The most common method for alkene 
epoxidation involves reaction with a peroxyacid, 
such as meta-chloroperbenzoic acid (MCPBA), 
peracetic acid, or performic acid. Peroxyacids, 
strong oxidizing agents, transfer an oxygen atom 
to a double bond, forming an epoxide. The reaction 
proceeds through a cyclic intermediate formed 
by the attack of the peroxyacid on the alkene, 
followed by collapse to yield the epoxide and the 
corresponding carboxylic acid. Selectivity depends 
on alkene substitution, peroxyacid structure, and 
reaction conditions.3–5,16

Fig. 1. Epoxidation of alkenes with para-acids
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Metal-Catalyzed Epoxidation
 Metal-catalyzed epoxidation is another 
commonly used method for the epoxidation of 
alkenes. This method involves the use of metal 
complexes, such as titanium, molybdenum, and 
tungsten, as catalysts to activate the peroxide 
reagent. Metal-catalyzed epoxidation has several 
advantages over the traditional peroxyacid 
method, including the ability to perform the 
reaction under milder conditions and the ability 
to selectively epoxidize certain types of alkenes. 

The mechanism of metal-catalyzed epoxidation 
involves the coordination of the metal catalyst 
with the peroxide reagent, followed by the 
activation of the peroxide and the transfer of an 
oxygen atom to the alkene. The selectivity of the 
reaction hinges on factors such as the type of 
metal catalyst employed, the characteristics of 
the peroxide reagent, and the reaction conditions. 
Understanding and optimizing these parameters 
are crucial for achieving the desired selectivity in 
catalytic processes.17,18

Fig. 3. Metal catalysed(Ti(salan) Epoxidation of 1,2-dihydronapthalene

Oxone Epoxidation
 Oxone is a tr iple salt of potassium 
peroxymonosulfate, which is a powerful oxidizing 
agent. The reaction of alkenes with Oxone leads to 
the formation of an oxirane intermediate through an 
epoxidation process. This intermediate undergoes 
hydrolysis to yield the corresponding epoxide. This 

sequential transformation is a fundamental step in 
various organic synthesis routes involving epoxide 
formation.The use of oxone has several advantages 
over peroxyacids, including its availability, low cost, 
and environmental friendliness. The selectivity of the 
reaction depends on the substitution pattern of the 
alkene and the reaction conditions.19,20

Fig. 4. Oxone catalysed Epoxidation of Alkenes

Asymmetric Epoxidation
 Asymmetric epoxidation is a valuable 
method for synthesizing chiral epoxides, which 
serve as crucial intermediates in pharmaceutical and 
natural product synthesis. Additionally, it is employed 
in producing chiral building blocks essential for drug 

discovery processes. In this method, a chiral catalyst 
is used to selectively produce one enantiomer of 
the epoxide. Some examples of the application of 
asymmetric epoxidation include the synthesis of 
epoxides such as limonene oxide, chalcone oxide, 
and styrene oxide.21,22

Fig. 2. Epoxidation of alkenes with meta-chloro-perbenzoic acid
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Fig. 5. Katsuki–Sharpless asymmetric epoxidation of allylic alcohols

Fig. 6. Katsuki–Sharpless asymmetric epoxidation of (E,E)-farnesol, serving as a pivotal step in the synthesis 
of sesquiterpene derivatives

Fig. 7. Mechanism for Sharpless asymmetric dihydroxylation

Base-Catalyzed Epoxidation
 Base-catalyzed epoxidation is an important 
method for the synthesis of epoxides from alkenes. 
It is used in the preparation of epoxides that are 
used as intermediates in the synthesis of various 
chemicals, including surfactants, detergents, and 
plasticizers. In this method, a base catalyst is used 
to activate the oxidizing agent, which then reacts with 
the alkene to produce the epoxide. Some examples 
of the application of base-catalyzed epoxidation 
include the synthesis of epoxides such as butadiene 
oxide, glycidol, and phenyl glycidyl ether.5,23,24

Fig. 8. Base catalysed epoxidation of intramolecular ether synthesis
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Enzymatic Epoxidation
 Enzymatic epoxidation involves the 
use of enzymes, such as cytochrome P450 
monooxygenases or lipoxygenases, to catalyze 
the formation of an epoxide from a double bond. 
Enzymatic epoxidation has several advantages over 
chemical methods, including the ability to perform 
the reaction under mild conditions and the ability to 
selectively epoxidize certain types of alkenes. The 
selectivity of enzymatic reactions relies on various 
factors, including the type of enzyme employed, the 
characteristics of the substrate, and the conditions 
under which the reaction occurs. Understanding and 
optimizing these parameters are crucial for achieving 
the desired selectivity in enzymatic processes.25

the appropriate reagent is contingent upon the 
specific heterocyclic substrate and the desired 
regioselectivity of the epoxidation reaction.22,26

Peroxy acids
 Peroxy acids are among the most commonly 
used oxidizing agents for epoxidation reactions. 
Examples include meta-chloroperbenzoic acid 
(MCPBA), peracetic acid (PAA), and perbenzoic 
acid (PBA). These reagents are often preferred 
due to their high reactivity and the ease of 
handling and storage. MCPBA, in particular, is 
widely used due to its high selectivity and mild  
reaction conditions.30

Metal complexes
 Metal complexes, such as molybdenum 
and tungsten catalysts, have also been used for the 
epoxidation of heterocycles. These reagents offer 
the advantage of high selectivity and mild reaction 
conditions. For example, the Jacobsen catalyst, 
which consists of a chiral salen ligand and a titanium 
center, has been used for the enantioselective 
epoxidation of pyrroles.31–33

Organic peroxides
 Organic peroxides, such as tert-butyl 
hydroperoxide (TBHP) and hydrogen peroxide 
(H2O2), can also be used for the epoxidation of 
heterocycles. These reagents offer the advantage 
of being relatively cheap and safe to handle. 
However, their use often requires higher reaction 
temperatures and longer reaction times compared 
to peroxy acids.34,35

Other reagents
 Other reagents that have been used for 
the epoxidation of heterocycles include oxone, an 
inorganic oxidizing agent, and dimethyldioxirane 
(DMDO), an organic peroxide. Oxone offers the 
advantage of being a solid reagent that can be 
easily handled and stored, while DMDO is a highly 
reactive and selective reagent that is often used 
for the epoxidation of electron-rich heterocycles. 
Oxone offers the advantage of being a solid reagent 
that can be easily handled and stored, while DMDO 
is a highly reactive and selective reagent that is 
often used for the epoxidation of electron-rich 
heterocycles.36,37

Fig. 9. P-450-catalysed epoxidation

 Additionally, chiral epoxides produced 
through asymmetric epoxidation play a crucial role 
as intermediates in the synthesis of pharmaceuticals 
and natural products. They are used as building 
blocks in the synthesis of drugs such as the antitumor 
drug taxol and the antiviral drug ganciclovir.26–28

 Moreover, epoxidation reactions are utilized 
in the synthesis of fine chemicals, including flavors 
and fragrances. For example, limonene oxide is used 
as a flavor and fragrance ingredient, while chalcone 
oxide is used as a precursor for the synthesis of 
chalcones, which have various biological activities.29

Reagents that uses for the epoxidation
 The process of introducing an epoxide 
functional group into heterocyclic compounds can 
be accomplished through the utilization of various 
oxidizing agents. These oxidants encompass 
peroxy acids, metal-based complexes, and 
organic peroxide compounds. The selection of 
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 Epoxidation is an important reaction 
in organic synthesis and has found wide-
ranging applications in various fields, including 
pharmaceuticals. Many pharmaceutical products use 
epoxidation methods in their synthesis to introduce 
epoxide functional groups into the molecule, 
which can confer a range of biological activities. 
In this context, we will discuss some examples 
of pharmaceutical products that use epoxidation 
methods in their synthesis.

Epothilones
 Epothilones are a class of natural products 
that have shown promising anticancer activity. 
They are structurally similar to taxanes, but their 
mechanism of action is different. Epothilones contain 
a macrocyclic lactone ring and a tetraene chain 
with an epoxide functional group. The synthesis of 
epothilones involves the selective epoxidation of 
the tetraene chain. Various oxidizing agents, such 
as dimethyldioxirane, m-chloroperbenzoic acid, and 
peracids, have been used for this purpose.39

Fig. 10. Oxone as an Oxidizing agent and reactions

 In addition to these reagents, green 
chemistry approaches have been developed for the 
epoxidation of heterocycles. For example, some 
studies have investigated the use of molecular 
oxygen and visible light as green oxidizing agents for 
the epoxidation of pyrroles and other heterocycles. 
These methods offer the advantage of being 
environmentally friendlier and potentially more cost-
effective compared to traditional oxidizing agents.38

Fig. 11. Structure of Epothilone A and B

Taxol
 Taxol is a widely used chemotherapy 
drug that is derived from the Pacific yew tree. It 
works by stabilizing microtubules and preventing 
cell division. Taxol contains a complex tetracyclic 
skeleton with an epoxide functional group.  
The synthesis of Taxol involves the epoxidation of 
the C13-C14 double bond, which is often carried out 
using peroxy acids or m-chloroperbenzoic acid.40,41

Artemisinin
 Artemisinin is a natural product that 
is derived from the Ar temisia annua plant. 
It is used in the treatment of malar ia and 
has shown promising activity against cancer. 
Artemisinin contains a peroxide functional group, 
which is generated by the epoxidation of the 
C12-C13 double bond using peroxy acids or 
m-chloroperbenzoic acid.42,43
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Fig. 12. Structure of Taxol(Paclitaxel)

Fig. 13. Structure of Artemisinin

Camptothecin
 Camptothecin is a natural product that 
has shown promising anticancer activity. It works 
by inhibiting topoisomerase I and preventing DNA 
replication. Camptothecin contains a lactone 

ring and a pentacyclic skeleton with an epoxide 
functional group. The synthesis of Camptothecin 
involves the epoxidation of the C9-C10 double 
bond using peroxy acids or m-chloroperbenzoic 
acid.44,45

Fig. 14. Structure of Camptothecin

Ivermectin
 Ivermectin is an antiparasitic medication 
extensively utilized for treating diverse parasitic 
infections, such as river blindness and scabies. It 
contains a macrocyclic lactone ring with an epoxide 
functional group. The synthesis of Ivermectin 
involves the epoxidation of the C22-C23 double bond 
using peroxy acids or m-chloroperbenzoic acid.46,47

Epoxidation in various heterocycles
Pyrroles
 Pyrroles are a class of heterocycles 
that are widely used in the synthesis of natural 
products and pharmaceuticals. The epoxidation 
of pyrroles is usually regioselective and occurs 
at the C2-C3 double bond, and the resulting 
epoxides can be further functionalized to yield 
a range of derivatives with different biological 
activities. The epoxidation of pyrroles has been 

achieved using various oxidizing agents, such as 
dimethyldioxirane and peracids. There are several 
methods for achieving regioselective epoxidation 
of pyrroles, including catalytic ring-opening 
reactions48, solvent-free catalytic methods49 
and reactions catalyzed by InBr350 The axial 
ligand of cytochrome P450 biomimetics can also 
influence the regioselectivity of epoxidation versus 
dehydrogenation51, Additionally, pyrroles can be 
used in regioselective alkylation reactions.52

Thiophenes
 They are a class of heterocycles that are 
widely used in the synthesis of pharmaceuticals and 
agrochemicals. The epoxidation of thiophenes has 
been achieved using various oxidizing agents, such 
as peroxy acids and m-chloroperbenzoic acid. The 
epoxidation of thiophenes is usually regioselective 
and occurs at the C2-C3 double bond. The resulting 
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epoxides can be further functionalized to yield 
a range of derivatives with different biological 
activities53. There are also various methods for 
synthesizing thiophenes, including modular synthetic 
routes that enable the functionalization of individual 
positions of thiophene sequentially via regioselective 
halogenations and cross-coupling reactions.54–56 The 
regio- and chemoselectivity of reactions involving 
thiophenes can be predicted using density functional 
theory-based reactivity indices.57

Imidazoles
 Imidazoles are a class of heterocycles that 
are widely used in the synthesis of pharmaceuticals 
and agrochemicals. The epoxidation of imidazoles 
is usually regioselective and occurs at the C2-C3 
double bond, and the resulting epoxides can be 
further functionalized to yield a range of derivatives 
with different biological activities. Various oxidizing 
agents, such as dimethyldioxirane and peracids, 
have been used for the epoxidation of imidazoles.58 
Additionally, imidazoles have been used in the 
synthesis of spirocyclic compounds, such as spiro-
[imidazole-indene] derivatives, through Rh(III)-
catalyzed [3+2] spirocyclization and ruthenium(II)-
catalyzed [3+2] spiroannulation reactions.59,60

Oxazoles
 They are a class of heterocycles that are 
commonly used in the synthesis of natural products 
and pharmaceuticals. The epoxidation of oxazoles 
is typically regioselective and occurs at the C2-C3 
double bond, and the resulting epoxides can be 
further functionalized to yield a range of derivatives 
with different biological activities. Various oxidizing 
agents, such as peracids and m-chloroperbenzoic 
acid, have been used for the epoxidation of 
oxazoles61. The synthesis of oxazoles can also be 
achieved through different methods, such as Lewis 
acid-promoted three-component cyclization62 

and gold(I)-catalyzed oxidative annulation63 
Additionally, fungal peroxygenases have been 
investigated for their ability to selectively epoxidize 
n-3 and n-6 fatty acids.64

Isoxazoles
 Isoxazoles are a class of heterocycles 
that are widely used in the synthesis of natural 
products and pharmaceuticals. The epoxidation of 
isoxazoles is usually regioselective and occurs at 
the C2-C3 double bond, and the resulting epoxides 

can be further functionalized to yield a range of 
derivatives with different biological activities. There 
are several methods for synthesizing isoxazoles, 
including copper-catalyzed [4+2]-cycloadditions65 

sequential 1,3-dipole cycloaddition reactions66 and 
intermolecular [5+1]-cycloadditions67 Additionally, 
the regioselectivity of the reaction can be reversed 
using a ruthenium catalyst68. The regioselectivity 
of the reaction strongly depends on the substrate 
substituents, and the resulting products can be 
carboxylic acids or delta bicyclic lactones.69

 Pyrazoles are a class of heterocycles 
that are commonly used in the synthesis of natural 
products and pharmaceuticals. The epoxidation of 
pyrazoles is usually regioselective and occurs at 
the C2-C3 double bond, and the resulting epoxides 
can be further functionalized to yield a range of 
derivatives with different biological activities. Various 
oxidizing agents, such as dimethyldioxirane and 
peracids, have been used to achieve the epoxidation 
of pyrazoles.70–73

Recent advances and future prospects
 Epoxidation reactions have been widely 
studied and utilized in various fields of chemistry, 
including organic synthesis, polymer chemistry, 
and medicinal chemistry.74–78 Recent advances and 
developments in the field of epoxidation have led to 
several potential applications and future prospects. 
As an example, the integration of green chemistry 
principles into certain oxidative transformations 
of steroids has led to significant advancements in 
synthetic chemistry related to these compounds.75 
Insect pheromones are attractive targets for 
the development of synthetic procedures, and 
recent research has focused on synthesizing 
these intraspecific chemical messengers using 
methodologies such as asymmetric epoxidations and 
dihydroxylations.76 Synthetic routes to glycosidase 
inhibitors, such as indolizidine iminosugars, have 
also been developed using asymmetric epoxidation 
and other synthetic strategies.78

 One recent advance is the development 
of new reagents and catalysts, such as a new 
copper(I) catalyst and a new silver-based reagent, 
which offer high selectivity, mild reaction conditions, 
high reactivity, and selectivity. developments include 
the use of chiral pyrrolidines as organocatalysts, 
the direct photo-epoxidation of propylene using 
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molecular oxygen, and the use of heterogeneous 
nanocatalysts for alcohol oxidation, epoxidation of 
alkenes, and allylic oxidation of alkenes.75,79,80

 Recent developments in the field of 
epoxidation include the use of alternative and 
greener oxidizing agents, such as molecular oxygen 
and photocatalysts, for the selective epoxidation 
of alkenes.81 These methods offer environmentally 
friendly and cost-effective alternatives to traditional 
oxidizing agents. Additionally, the application 
of epoxidation reactions in various fields has 
expanded in recent years. For example, the use of 
epoxides as building blocks in the synthesis of green 
polymers, such as epoxy resins, polycarbonates, 
and nonisocyanate polyurethanes, has been widely 
explored.81–83 Enzymatic epoxidation using fungal 
peroxygenases has also been investigated as a 
potential green synthesis technology for epoxides.84 
The development of green synthesis technology 
for propylene oxide by propylene epoxidation with 
hydrogen peroxide as the oxidizing agent has also 
been reviewed.85

 In recent years, the utilization of epoxidation 
reactions has broadened, encompassing the 
incorporation of epoxides as fundamental units 
in polymer synthesis. Additionally, research has 
explored the epoxidation of bio-based feedstocks 
like vegetable oils and fatty acids as a viable 
pathway for producing bio-based polymers and 
materials.86 Significant research has been dedicated 
to developing stable heterogeneous catalysts for 
epoxidation by immobilizing catalytically active metal 
species onto organic or inorganic materials. These 
materials include polymers, ion-exchange resins, 
alumina, zeolite, and silica.87 Epoxidation reactions 
have been utilized in the synthesis of various 
pharmaceuticals and natural products. For example, 
the epoxidation of terpenoids has been used as a key 
step in the synthesis of several natural products with 
potential medicinal properties, including taxol and 
artemisinin. The epoxidation of amino acids and their 
derivatives has also been studied for the synthesis of 
biologically active compounds and pharmaceutical 
intermediates.88,89 The enzymatic synthesis of 
epoxides has become increasingly popular due to 
its environmentally friendly nature, offering high 
regioselectivity and minimal by-product formation. 
Moreover, the use of hydrogen peroxide (H2O2) as a 
green oxidant and the requirement for mild operating 

temperatures result in lower energy consumption, 
making this enzymatic process advantageous.90 

Olefin epoxides are widely used in organic chemistry 
and can act as intermediates of organic synthesis 
reactions, as well as organic ingredients in organic 
synthesis, petrochemical, pharmaceutical, perfume, 
electronics industry, fine chemical, polymer synthesis 
materials, and other fields.91

 Epoxidation reactions offer opportunities for 
creating novel materials and bioactive compounds. 
One area of interest is the development of 
new catalytic systems for selective epoxidation 
reactions. Selective epoxidation of alkenes and 
other unsaturated compounds is challenging 
due to the possibility of over-oxidation or side 
reactions. However, recent research has shown 
promising results in the development of new 
catalytic systems that offer high selectivity and 
efficiency. As an illustration, novel catalytic systems 
comprising heterogeneous Ag-TiO2-SiO2 composite 
materials have been synthesized. These materials 
were employed for the selective epoxidation of 
cyclohexene using hydrogen peroxide (H2O2) as 
the oxidant. The incorporation of silver (Ag) into the 
TiO2-SiO2 matrix enhances catalytic activity, enabling 
efficient conversion of cyclohexene to cyclohexene 
oxide with high selectivity.92 Additionally, chloro and 
triflate manganese(II) complexes have been found 
to have catalytic activity in epoxidation reactions 
and can be reused as catalytic systems for alkene 
epoxidation.93 Recent research has placed emphasis 
on employing gold (Au) nanoparticles as catalysts 
for propylene epoxidation using a combination 
of hydrogen (H2) and oxygen (O2). These studies 
have highlighted the critical roles played by various 
factors such as catalyst synthesis methods, 
material support, nanoparticle sizes, and dispersion 
amounts. Understanding these factors is essential 
for optimizing the catalytic performance of Au 
nanoparticles in propylene epoxidation reactions.94 
Recent research has concentrated on developing 
greener and more energy-efficient processes for 
alkene epoxidation, aiming to minimize waste 
generation and energy consumption. These efforts 
include exploring alternative reaction conditions, 
such as catalytic systems and environmentally 
friendly oxidants, to enhance efficiency and 
sustainability. By reducing waste and energy usage, 
these advancements contribute to the development 
of more environmentally friendly chemical processes 
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with potential applications in various industrial 
sectors.95 Organic catalysis for epoxidation using 
hydrogen peroxide has been investigated, exploring 
the potential of different organic species to catalyze 
ethene epoxidation.96 These developments in 
catalytic systems for selective epoxidation reactions 
offer exciting prospects for the synthesis of new 
materials and bioactive compounds in the future. 
Epoxidation reactions have potential applications 
in the field of renewable energy. Epoxidation 
of vegetable oils and bio-based feedstocks is 
investigated for synthesizing sustainable polymers. 
By introducing epoxide groups, functionalized 
molecules are formed, enabling polymerization 
into biodegradable materials. This research offers 
potential for green chemistry advancements and 
the creation of eco-friendly materials.97,98 The 
epoxidation of unsaturated fatty acids can produce 
epoxy fatty acid methyl esters, which have potential 
as biofuels.99 There is an increasing interest in 
using renewable resources as substitutes for 
petroleum-based polymers. Much effort has been 
directed towards developing polymeric materials 
from vegetable oils as a sustainable alternative. 
Research has focused on finding a straightforward, 
cost-effective method of epoxidation suitable for 
industrial applications.97

Advantages and disadvantages of epoxidation

be used to synthesize a wide range of epoxides, 
which have numerous applications in various 
fields of chemistry.100–103 For example, epoxidation 
reactions can be used in green-chemical aqueous 
phase synthesis and environmental remediation.100 
Vanadium complexes can be used as catalysts in 
epoxidation reactions, and non-conventional solvents 
can be used as reaction media.101 Cytochrome P450 
enzymes can catalyze both hydroxylation and 
epoxidation reactions, and protein engineering can 
enhance catalysis.102 Epoxidation reactions can 
also be used in electrocatalysis, such as in the 
selective electrocatalytic cyclooctene epoxidation.104 

Mesoporous phenolic resins can be used as catalysts 
in asymmetric epoxidation and aldol reactions.103

Selectivity
 Epoxidation reactions can be highly 
selective, meaning that it is possible to selectively 
epoxidize one or more double bonds in a molecule. 
This selectivity can be achieved through careful 
choice of the oxidizing agent and reaction conditions. 
For example, Nb-EISA catalysts with relatively low 
Nb loadings have been shown to exhibit exceptional 
propylene epoxidation performance with H2O2 
as oxidant, with nearly total propylene oxide 
selectivity (>99%) and high productivity.105 Similarly, 
manganese(III) tetraphenylporphyrin encapsulated 
by ion-modified hexagonal mesoporous silica 
has been shown to exhibit enhanced epoxidation 
selectivity.106 In the context of ethylene epoxidation, 
studies have demonstrated that Ag-Cu alloy catalysts 
exhibit higher selectivity towards ethylene oxide in 
comparison to pure Ag catalysts. The selectivity is 
primarily governed by the relative strength of the 
metal-carbon versus metal-oxygen bonds, indicating 
the crucial role of alloy composition in dictating 
catalytic performance. These findings underscore the 
importance of understanding the intricate interplay 
between catalyst structure and activity in ethylene 
epoxidation reactions.107

Mild reaction conditions
 Epoxidation reactions are applicable to a 
broad spectrum of substrates due to their ability 
to occur under relatively mild conditions.108–112 
For example, intercalated catalysts have been 
developed for the epoxidation of allylic alcohols 
under mild and solvent-free conditions.109 Oxido-
molybdenum(V) complexes have been employed as 
catalysts for the selective epoxidation of a variety 

Fig. 15. Advantages of Epoxidation Reaction

 Epoxidation is a widely utilized reaction 
in various fields of chemistry, including organic 
synthesis, polymer chemistry, and medicinal 
chemistry. Like any other chemical reaction, there 
are both advantages and disadvantages associated 
with the use of epoxidation reactions.

Advantages
Versatality
 Epoxidation reactions are versatile and can 
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of olefins. These complexes have demonstrated 
high turnover frequencies (TOF values) in a solvent 
mixture of CH3CN/H2O, where hydrogen peroxide 
serves as a green oxidant and NaHCO3 acts as a 
promoter. 108 Mesoporous niobium oxyhydroxide 
catalysts have been synthesized for the epoxidation 
of cyclohexene under mild reaction conditions.110 
Acidic three-liquid-phase microemulsion systems 
have also been designed for epoxidation reactions 
under mild conditions.112

High yields
 Epoxidation reactions can yield high 
amounts of the desired product when performed 
under optimized conditions, making them a  
cost-effective synthetic strategy. As an illustration, 
a designed peroxygenase enzyme successfully 
attained high conversions (up to 98%), excellent 
enantioselectivity (up to 98% ee), and satisfactory 
product yields (ranging from 50% to 80%) in 
enantiocomplementary epoxidations of different 
α,β-unsaturated aldehydes.113 Oxido-molybdenum 
corroles were employed as reliable catalysts for the 
selective epoxidation of diverse olefins, achieving 
high turnover frequencies (TOF values of 2066-
3287 h-1) and good yields.108 Carbonyl-stabilized 
ammonium ylide-mediated epoxidation reactions 
were also found to achieve high enantioselectivities 
and high yields.114 Further investigations have 
documented remarkable activity in the epoxidation 
of olefins utilizing nanocrystalline zirconosilicate 
catalysts.115 Additionally, high yields (up to 100%) 
and exceptional enantioselectivities (up to 99% 
ee) were achieved using bis-amino-bis-pyridine 
manganese complexes.116

Importance in industrial processes
 Epoxides have numerous industr ial 
applications, including their use as solvents, 
adhesives, and plastics. Epoxidation reactions 
are therefore important for the synthesis of 
these compounds.117–119 For example, epoxides 
can be used to create carboxylic acid-modified 
epoxides from natural oils, which can be used as 
food preservatives, coating materials, and anti-
corrosion coatings.119 Epoxides can also be used 
to create cyclic carbonates, which have several 
industrial applications, including as ink binders and 
for imparting water repellency.120,121 The synthesis 
of cyclic carbonates using MCM-41 supported dual 
imidazolium ionic liquids catalysts is a promising 
method for industrial applications.120

Disadvantages
Toxicity of oxidizing agents
 Oxidizing agents used in epoxidation 
reactions, such as m-chloroperbenzoic acid 
(m-CPBA) and peracids, can be toxic and 
hazardous to handle122,123 Oxidative stress is a 
frequently observed mechanism in the toxicology 
of environmental agents, uniting the effects of 
various classes of toxic substances with diverse 
physicochemical properties.124 Most oxidizing agents 
are toxic by ingestion, and the degree of toxicity 
varies widely122 Chromium(VI) compounds and the 
residual chromium after the reaction are highly toxic, 
requiring careful handling or disposal due to their 
toxicity.123 Chromium in all oxidation states has been 
identified as carcinogenic.125,126

Potential for over-oxidation
 Epoxidation reactions have the potential 
for over-oxidation, which can lead to the formation 
of unwanted byproducts. For example, the over-
oxidation of epoxides to diols or the formation of 
sulfones instead of sulfoxides can occur.127–130 
However, recent advances in epoxidation methods 
have been developed to minimize waste generation 
and energy consumption, which could provide 
sustainability in terms of environmental impact and 
energy consumption.95

Side reactions
 Epoxidation reactions are susceptible to 
side reactions, including the generation of diols or 
other oxygen-containing functional groups. In the 
epoxidation of soybean oil, a significant side reaction 
is the epoxide ring opening reaction (ROR), which 
consistently diminishes the selectivity to epoxidized 
soybean oil (ESBO). This reaction is crucial for the 
production of polyols and lubricants.131 Nevertheless, 
research into the epoxidation of soybean oil in 
toluene using peroxoacetic and peroxoformic acids 
revealed minimal occurrence of side reactions. This 
was evidenced by the absence of an OH band in 
the IR spectra, the formation of less than 2% of 
higher molecular weight products observed in gel 
permeation chromatography, and selectivity values 
ranging between 0.9 and 1.132 Recent developments 
in greener and energy-efficient alkene epoxidation 
processes aim to minimize waste generation and 
energy consumption, which could significantly 
reduce both operational costs and greenhouse gas 
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emissions. These advancements focus on improving 
the efficiency of epoxide synthesis through various 
methods, as discussed in a recent review paper.95

Limitations for certain substrates
 Epoxidation reactions may not be suitable 
for certain substrates, such as highly sterically 
hindered or functionalized alkenes, which may not 
undergo epoxidation selectively or efficiently.133,134 

However, recent advances in epoxidation methods 
have been developed to minimize waste generation 
and energy consumption, which could provide 
sustainability in terms of environmental impact and 
energy consumption.95 For example, He+O2 plasma 
can drive the epoxidation of alkenes in solution, 
generating epoxides without oxidant waste-streams, 
running at room temperature and atmospheric 
pressure, and requiring no catalyst.135

Environmental concerns
 The use of traditional oxidizing agents 
in epoxidation reactions can be environmentally 
damaging due to potential hazardous waste disposal 
and pollution. There are several alternative methods 
that have been developed to minimize waste 
generation and energy consumption, including 
the use of eco-friendly oxidants such as molecular 
oxygen and hydrogen peroxide, which produce 
water as the only by-product.95,136,137 Furthermore, 
recent advancements in energy-efficient methods 
for epoxidation have emerged, including continuous 
flow chemistry, reactive distillation, microwave-
assisted synthesis, microreactors, and sonochemical 
techniques.95

 In conclusion, epoxidation reactions 
have many advantages, including their versatility 
and ability to produce highly useful bulk and 
fine chemicals. However, there are also some 
drawbacks to consider when selecting a synthetic 
strategy. These include toxicity, side reactions, and 
environmental concerns. For instance, one main 
drawback of fatty acid epoxidation is the potential 
formation of peroxy fatty acids when carboxyl 
groups react with hydrogen peroxide.138 Developing 
greener and more sustainable epoxidation methods, 
such as alternative oxidizing agents and catalytic 
systems, can address some of these drawbacks and 
promote the continued use of epoxidation reactions 
in chemistry. For instance, the use of titanisilicate 

epoxidation catalysts has been proposed as a way 
to overcome some of the challenges associated 
with traditional epoxidation methods.139 Additionally, 
continuous flow epoxidation of alkenes using 
a heterogeneous catalyst has been developed 
as a more efficient and sustainable method.140 
Thermochemical studies have also been conducted 
to better understand the reactivity of epoxides and 
related compounds.141 Overall, it's important to weigh 
the advantages and disadvantages of epoxidation 
reactions and consider developing more sustainable 
methods to address the drawbacks.

CONCLUSION

 In conclusion, this article provides a 
comprehensive overview of epoxidation reactions, 
covering the various types of reactions, reagents 
used, applications, advantages, and disadvantages 
associated with this important class of reactions. It 
also highlights recent advances in greener and more 
sustainable methods and their potential for future 
applications in various fields of chemistry.

 The article offers valuable insights into 
the mechanisms involved in epoxidation reactions 
and their importance in organic synthesis, polymer 
chemistry, and medicinal chemistry. The examples 
of pharmaceutical compounds and natural products 
synthesized using epoxidation reactions demonstrate 
the significant impact of this class of reactions on 
drug discovery and development.

 The information on green chemistry 
and catalysis provides an exciting opportunity for 
the development of novel and more sustainable 
methods, promoting the continued use of epoxidation 
reactions in various fields of chemistry. The potential 
for further research and application in this area is 
significant, making this article a valuable resource 
for researchers and students interested in exploring 
new synthetic strategies.

 In summary, this article offers a comprehensive 
understanding of epoxidation reactions and their 
applications, highlighting their importance and potential 
for future development. It is an essential resource 
for both academia and industry, providing valuable 
insights for researchers and students interested in this 
important area of chemistry.
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