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Abstract

	 In this article, the Upadhyaya transform is employed in diverse chemical reaction models 
expressed through ordinary differential equations. The investigation reveals that this transform 
provides precise and efficient solutions, circumventing the necessity for complex computations. 
Furthermore, the integration of graphical representations enhanced the interpretability of results, 
offering visual insights into the temporal evolution of reactant concentrations. These findings 
collectively underscore the efficacy of the Upadhyaya transform in addressing ordinary differential 
equations within chemical reaction models.
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INTRODUCTION

	 Differential equations have frequently been 
solved using the integral transform. Due to their 
significance in mathematically expressing potential 
changes in scientific and engineering situations, 
differential equations have played a significant role 
in many scientific and engineering domains. Integral 
transforms are mathematical operations that convert a 
given function into a new representation, often in terms of 
a different variable or set of variables. These transforms 

are widely used in various branches of mathematics and 
physics to simplify the analysis and solution of complex 
problems. These problems involve finding the solution 
to a differential equation subject to certain boundary 
conditions. By applying an integral transform, the 
differential equation can be transformed into an equation 
involving the transform of the unknown function. This 
allows for the boundary conditions to be incorporated 
into the transformed equation, making it easier to find 
the solution. Lalit Mohan Upadhyaya1 introduced the 
Upadhyaya transformation, a highly advanced transform 
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within the Laplace class, which holds great promise 
for cutting-edge applications across various fields 
of research. Upadhyaya and his colleagues2 further 
developed this theory, positioning it as one of the most 
robust and sophisticated transforms in contemporary 
mathematics literature. Its potential spans disciplines 
including mathematics, engineering, physics, chemistry, 
biology, pharmaceuticals, economics, sociology, and 
more. Despite its vast potential, many applications of this 
transformative tool remain untapped. This paper focuses 
on demonstrating the application of the Upadhyaya 
transform in solving chemical kinetics problems, 
showcasing its efficacy within the realm of chemical 
sciences. Murphy3 investigated consecutive chemical 
reactions of the first and second orders. Chrastil4 used 
the final product to determine the rate constants of a 
first-order chemical process. Kalaiarasi et al.,5 utilized 
the Kamal transform method to address Two Tank 
Mixing Problems, which involve solving first-order linear 
differential equations. To determine the concentration of 
chemical compounds, Higazy and Aggarwal6 applied 
the Sawi transform to the mathematical model of 
the chemical reaction in series. Mousa7 utilized the 
Upadhyaya transform to determine the solution for 
the Volterra integral equation of the first kind. Patil and 
others8,9 applied the Soham and Kushare transforms 
in chemical sciences, while Peker et al.,10 utilized the 
Kashuri Fundo Transform to obtain solutions for various 
chemical reaction models. To obtain the solution for 
Volterra integral equations of the second kind, Dinesh 
and Prakash11 employed the Upadhyaya transform. Kuffi 
and Mansour12 solved certain cardiovascular models 
using the Emad-Falih integr2al transform. Aggarwal 
et al.,13 utilized the Rishi Transform to ascertain the 
concentrations of the chemical compounds in a first-
order successive chemical reaction. Anuj et al.,14 
employed the Anuj transform to solve the problem 
of reactant concentrations in first-order successive 
chemical reactions analytically. To solve fractional integro-
differential equations, Gunaseka and Prabakaran15 used 
the Mohand transform. Recently, Dinesh and Kuffi16 
demonstrated the Upadhyaya transform’s ability to 
solve ordinary differential equations by applying it to 
cardiovascular models. The present study highlights 
the significance of the Upadhyaya transform in solving 
chemical reaction models. 

Definition of upadhyaya transform
	 The Upadhyaya transform of the function  
f(t)is mathematically defined as1:

 (1)

	 The representat ion of the inverse 
Upadhyaya transform is as follows:

	 (2)

	 In the general formulation of the Upadhyaya 
transform, l1,l2 and l3 are complex parameters1.

Some useful characteristics of upadhyaya 
transformation 
Linearity property 
	 If f1(t) be f2(t) two functions with UT’s u1 (l1, 
l2, l3) and u2 (l1, l2, l3) in terms of the parameters  
l1, l2, l3 and b1, b2 be any constants then1

Convolution property
	 If the Upadhyaya transform of the functions   
f1(t) and f2(t) with respect to the parameters l1, l2, l3 
are u1 (l1, l2, l3) and u2 (l1, l2, l3) then convolution 
of Upadhyaya transform of the functions f1(t) * f2(t) 
is given by1

Where f1(t) * f2(t) is given by

Upadhyaya transforms of some elementary 
functions1

Upadhyaya transform of derivatives

U[f1(t)] = u (l1, l2, l3) If then from1
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Applications of the upadhyaya transform in 
various chemical reaction models
	 In this section, we apply the Upadhyaya 
transform to solve several chemical reaction models 
represented by ordinary differential equations, which 
play a crucial role in the realm of chemistry.

	 The zero-order chemical reaction model 
satisfies the initial value problem10

	 (3)

c(0) = c0	 (4)

where 

	 c(t)- concent ration of reacting substance 
at time t, k0-positive constant.

	 Performing the Upadhyaya transform 
bilaterally in equation (3) yields

		  (5)

	 Let U[c(t)] = u(l1, l2, l3) Using the derivative 
property of Upadhyaya transform and initial condition 
(4), we obtain equation (6)

	 (6)

	 After applying bilaterally the inverse 
Upadhyaya transform to equation (6), we will find 
the solution to the given initial value problem as

c(t) = c0-k0 t	 (7)   

linearly with time, indicating a constant reaction rate. 
The slope of the graph represents the rate constant 
(k0), with a negative value denoting a decrease in 
concentration over time. This linear decrease in 
concentration showcases the characteristic behavior 
of zero-order reactions, where the rate remains 
unaffected by changes in concentration.

	 The First-order chemical reaction model 
satisfies the initial value problem10

	 (8)

c(0) = c0	 (9)
	
	 We apply the Upadhyaya transform to solve 
the given first-order chemical reaction model.

	 Applying the Upadhyaya transform 
bilaterally to equation (8) yields

	 (10)

	 Let U[c(t)] = u(l1, l2, l3)By rearranging 
equation (10) in accordance with the initial condition 
(9) and Upadhyaya transform's derivative property, 
we obtain 

		  (11)

	 After applying bilaterally the inverse 
Upadhyaya transform to equation (11), we will find 
the solution to the given initial value problem as 

c(t) = c0 e
-k1t		  (12)   

Fig. 1. The solution behaviour of application 4.1.

	 Figure 1 illustrates the concentration 
of a reacting substance over time in a zero-
order chemical reaction. Starting from an initial 
concentration (c0), the concentration decreases 

Fig. 2. The solution behaviour of application 4.2

	 Figure 2 depicts the concentration of a 
reacting substance over time in a first-order chemical 
reaction. As time progresses, the concentration 
exponentially decreases, following a decay curve 



770THAKUR et al., Orient. J. Chem., Vol. 40(3), 767-772 (2024)

characterized by the rate constant (k1), The initial 
concentration (c0), determines the starting point of 
the curve, with higher initial concentrations leading 
to slower decay rates.

	 Now we determine the solutions for the systems 
of differential equations that govern the successive 
chemical reactions of the first order given by10

  (13)

With the initial conditions

c1(0)=c0, c2(0) = c3(0) = 0	 (14)

	 In equation (2), c1(t)  is the concentration 
of substance A1 at time t, which breaks down to 
generate the new substance A2 with concentration 
c2(t), and c3(t) is the concentration of a new element 
derived from.

	 In the prior application, we determined that 
the differential equation of the function c1(t)  has a 
solution as c0 e

-k1t. When we plug c0 e
-k1t solution into 

the differential equation of the c2(t)  function, we get

	 (15)

	 Applying the Upadhyaya transform 
bilaterally to equation (15) yields

	 (16)

	 Let U[c2(t)] = u(l1, l2, l3). By rearranging 
equation (16) in accordance with the initial condition 
(14) and Upadhyaya transform's derivative property, 
we obtain 

	 (17)

	 After applying bilaterally the inverse 
Upadhyaya transform to equation (17), we get

	 (18)

	 We now have the solutions to the differential 
equation of the function c2(t). Substituting

][)( 21

12

01
2

tktk ee
kk

cktc -- -
-

=  into the differential equation for 
the  function produces the following result:

	 (19)

	 Applying the bilateral Upadhyaya transform 
to equation (19), we obtain

	 (20)

	 Let U[c3(t)] = u(l1, l2, l3)  and using the 
derivative property of Upadhyaya transform, we 
obtain

	 (21)

	 Equation (21) can be expressed as follows 
by using the initial condition (14).

	 (22)

Rearranging the equation (22), we get

	 (23)

	 After applying bilaterally the inverse 
Upadhyaya transform to equation (23), we get

	 (24)

	 Considering the previous solutions, the 
outcome can alternatively be stated as follows:

Fig. 3. The solution behaviour of application 4.3

	 F igure 3 depicts the evolut ion of 
concentrations in a system undergoing successive 
first-order chemical reactions. Init ially, the 
concentration A1(c1) of  is high and gradually 
decreases exponentially over time as it transforms 
into A2(c2). A2's concentration rises initially, reaching 
a plateau as it accumulates, then slowly declines. 
Meanwhile, B's concentration (c3) steadily increases 
over time as it forms from A2, eventually leveling 



771THAKUR et al., Orient. J. Chem., Vol. 40(3), 767-772 (2024)

off. This dynamic interplay among the substances 
highlights the intricate kinetics of first-order reactions 
and the transformation of reactants into products.

CONCLUSION

	 This research showcases how employing 
the Upadhyaya transform for chemical reaction 
models has proven to be effective and elegant, 
streamlining the solution process of ordinary 
differential equations commonly encountered in 
chemical kinetics and various other branches of 
chemistry. By providing a streamlined approach 
that requires minimal computational burden, this 
transform offers a valuable tool for researchers and 
practitioners in understanding reaction kinetics. The 
inclusion of graphical representations has further 
enhanced the interpretability of results, facilitating 

deeper insights into the temporal evolution of 
reactant concentrations. Moving forward, there is 
potential for extending the utility of the Upadhyaya 
transform to more complex chemical systems and 
exploring its integration with advanced computational 
techniques for real-time simulation and optimization. 
This underscores its significance as a versatile 
method with promising implications for advancing our 
understanding and application of chemical kinetics.
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