ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2017, Vol. 33, No. (2): Pg. 1045-1046 # Calculation of Spin Orbit Coupling of Tungsten (III) Complexes: A DFT Application #### M.L. SEHGAL* Fmr. Head, Department of Chemistry, D.A.V. College, Jalandhar-144008, India. *Corresponding author E-mail: mehjabeenjaved200@gmail.com http://dx.doi.org/10.13005/ojc/330263 (Received: February 18, 2017; Accepted: January 04, 2017) #### **ABSTRACT** Making use of DFT, we could calculate Spin Orbit Coupling Constant $(\lambda_{\text{complex}})$ values of the five tungsten (III) complexes which were difficult to arrive at experimentally since there would always occur errors during the determination of their contributing parameters like CFSE and (A_{loc}) . Keywords: Spin Orbit Coupling, ZORA commands, Collinear #### INTRODUCTION Unlike the 1st transition series metal ion complexes, there had, hardly, been any study done on the calculation of Spin Orbit Coupling $(\lambda_{\text{complex}})$ of the corresponding complexes of 2^{nd} and 3^{rd} transition series. The limitation would arise because high λ_{complex} values¹ of their complexes caused errors both in the exact determination of their Crystal Field Stabilization Energies (CFSE) as well as the ESR parameters (especially A $_{\text{ten}}$). They would, further, cause errors in the g values if determined by experimental methods. We applied Density Functional Theory (DFT) implemented in ADF 2012.02 software to its ESR/EPR Program which was run by giving Single Point, LDA, Default, Spin Orbit, Unrestricted, None, Collinear and ZORA commands using TZP Basis set with Nosym symmetry after definite Pre-optimization of five W (III) complexes to obtain their g iso values2-4. Five known relations (a-e) were used in a sequence. Magnetic moments (μ_{ADF}) arising from the First Order Zeeman Effect were calculated from the g iso values (a) . Magnetic moment values arising from the Second Order Zeeman Effect [Temperature Independent Paramagnetic Moments (μ_{tin})] were calculated by (c) from their paramagnetic susceptibilities (χ_{tin}) as calculated by (b). Sum of μ_{ADF} and $~\mu_{~\text{tip}}$ would give effective magnetic moments $(\mu_{\mbox{\tiny eff}})$ (d) .CFSE values of W (III) complexes were ≈1.75 times the reported CFSE values of the corresponding Cr (III) complexes $^{\text{5-7}}.~\lambda_{\text{Complex}}$ values $^{\text{8}}$ of W (III) complexes Table 1: Various Parameters and Spin Orbit coupling (λ complex) of Tungsten(III) Complexes | Complex (⁴ A _{2g}) | Point
group | g _{iso} | CFSE(cm ⁻¹) of
Corresponding
Cr(III)
Complex | Approximate
CFSE
(cm-1)of
W(III)
Complex* | μ ADF [a]
(B.M) | χtip [b] **
μ tip [c]
(B.M) | μ eff [d]
(B.M.)
(cm1-) | λ complex
[e] | |--|----------------|------------------|---|---|---------------------------|-----------------------------------|-------------------------------|-------------------------| | [W F6]-3 | Oh | 1.80193 | 14900(7) | 26075.0 | 3.489 | 76.19 | 3.536 | 567.21 | | [WCl6]-3 | -do- | 1.868252 | 13920(8) | 24360.0 | 3.6179 | 0.047
85.71
0.053 | 3.671 | 317.79 | | [W Br6] -3 | -do- | 1.893263 | 13224(6) | 23142.0 | 3.6663 | 90.23
0.0559 | 3.7222 | 225.27 | | [W(OH2)6]+3 | C1 | 1.859795 | 17400(6) | 30450.0 | 3.6014 | 68.57
0.0425 | 3.644 | 450.30 | | [W(NH3)6] +3 | 3 -do- | 1.925022 | 21750 ⁽⁷⁾ | 38062.5 | 3.7278 | 54.91
0.034 | 3.7618 | 273.21 | were calculated by (e). (a) $$\mu_{ADF} = [g_{iso}^2 s(s+1)]^{1/2}$$ (b) $$\chi_{tip} = 8N\beta^2/10Dq$$ (c) $$\mu_{\text{tip}} = \chi_{\text{tip}} * \mu_{\text{s.o}} / \chi_{\text{s.o}}$$ (d) $$\mu_{t = \mu ADF + \mu tip}$$ (e) $$\mu_{eff} = \mu_{so} (1 - \sigma * \lambda_{complex} / 10Dq)$$ ### **REFERENCES** 5. - 1. Figgis, B. N. Intro. Ligand. Fields. ed. U.S; Table 3.4, 1966, 60. - 2. Singh, H.; Bhardwaj, A. K.; Sehgal, M. L.; Mittal, S. K. Int. J. Current Res. Rev. 2012, 4, - 3. Singh, H.; Bhardwaj, A. K.; Sehgal, M. L.; Mittal, S. K. Int. J. Current Res. Rev. **2013,** *5*, 13-31 - 4. Singh, H.; Bhardwaj, A. K.; Sehgal, M. L.; 8. - Mittal, S. K. Int. J. Current Res. Rev **2013**, *5*, 71-88. - Jorgensen, C. K. Absorp. Spectra. Chem. Bond. Compl. Paragon Press, N.Y. 1962. - 6. Jorgensen, C. K. Advn. Chem. Phys. 1963, 5, - 7. Hatfield, W.E.; Fay, R.C.; Pfluger, C.E.; Piper, T. S. J. Am . Chem. Soc. 1963, 85, 265. - Alan, E. Intro. Magneto. Chem. 1968. ^{*}Multiply CFSE of corresponding Cr (III) Complex by 1.75 ^{**}Multiply by 106- c g s $[\]mu$ $_{s.o}$ =3.8729 B.M and $\chi_{s.o.}$ =6250 , 10 $^{\circ}$ egs for 3 $\,$ (e) μ_{eff} = μ_{so} (1- σ * λ $_{\text{complex}}$ /10Dq) unpaired electrons