Synthesis of bioactive molecule fluoro substituted benzothiazole comprising quinazolinyl imidazole for biological and pharmacological screening

E. JAYACHANDRAN

Depratment of Pharmacy, SCS College of Pharmacy, Harapanahalli - 583 131, (India).

(Received: May 16, 2008; Accepted: July 22, 2008)

ABSTRACT

Various substituted 3-{7-substituted-6-1,3 -benzothiazol-2-yl-1-({4-methylphenyl}) sulfonyl]20thixo-2,3dihydroquinazolin –4 (1H)-one and 2-[(4Z)-4-benzylidine-2-phenyl-5-oxo-4,5-dihydro-1H-imidazole-1-yl]-N-(7-substituted-6-fluro-1,3-benzothiazole-2-yl) benzamide containing different functional groups have been synthesized by condensing Ethylchloroformate with substituted 2-aminobenzothiazoles in presence dry acetone and K_2CO_3 . The identity of compounds were confirmed on the basis of their spectral (UV-Visible, IR, 1H NMR and MASS) data. Further, they have been screened for their antimicrobial, antiinflammatory, anticonvulsant and anthlmentic activities.

Key words: Fluorine, Benzothiazole, sulphonamide, imidazole, quinazolin.

INTRODUCTION

The chemistry and pharmacology of quinazoline have been of great interest because quinazoline derivatives possess various biological activities. This include antimicrobial¹⁻², anticonvulsant³⁻⁵, antineoplastic, analgesic and antiinflammatory⁶⁻⁷ etc.

Therefore in present work we have prepared quinazoline incorporate with fluoro substituted benzothiazole.

Imidazoliones exhibit diverse biological properties. Hence synthesis of new imidazolinones is of considerable interest. In the recent years the chemistry of oxazolones have received much attention due to their use as intermediates for the synthesis of some heterocyclic systems.

Imidazolinones have been reported to posses antifungal⁸⁻⁹, anti-inflammatory¹⁰, antiviral¹¹, antitubercular, antihistamine activity.

Recently 1,2,4-trisubstituted-5imidazolones have been reported to possess monoamino oxidase (MAO) inhibitory and anticonvulsant activity. Benzylidene derivatives are also found to possess MAO inhibitory activity.

The sulfonamide¹²⁻¹⁶ drugs were the first effective chemotherapeutic agents to be employed systemically for the prevention and cure of bacterial infectiont in human beings. The introduction of trimethaprim and sulphamethoxazole has resulted in creased use of sulfonamide for the treatment of specific microbial infection. Benzothiazoles with sulphonyl group, imdazolone etc were reported to posses various pharmacological activity of clinical importance.

However, little is known about substituted benzothiazoles having sulphonamido moiety and imidazole with sulphonamido group. Therefore in present work we have sulphonamido group link with benzothiazole ring and imidazolone group to get good biodynamic leads.

MATERIAL AND METHODS

Melting point was determined by open capillary tube method and are uncorrected. T.L.C was run on silica gel G plates using butanol, ethyl acetate and chloroform (1:2:1) as developing solvent for the purity of the compounds. I.R. Spectra were recorded on Shimadzu FTIR Spectrophotometer by using NUJOL MULL technique.

All the compounds synthesized were screened for antibacterial and antifungal activities

at two different concentrations (50µg/ml, 100µg/ml) against *Staphylococcus aureus, Streptococci, Escherchia coli, Ps. aureus* and *Candida albicans, Aspergillus niger* by cup plate method using *Procaine Penicillin, Streptomycin* and *Griseoflavin* respectively as standards. The compounds showed considerable activity against all species tested at 50µ/ml, 100µg/ml. Fluoro substituted benzothiazoles series was tested for antibacterial activity. Were calculated which are shown in the table. The compounds showing activity index more than 0.7 were considered to be significantly active.

S.	Compd.	m.p./b.p.	Yield	Molecular	M.wt	Cal	culated%	
No.	Code	(°C)	(%)	Formula		С	Н	Ν
1.	P1	260	78%	C ₂₈ H ₁₈ O ₅ S ₃ N ₅ F	619	54.28	2.91	11.31
2.	P2	242	82%	$C_{28}H_{18}O_5S_3N_5F$	619	54.28	2.91	11.31
3.	P3	230	75%	C ₂₈ H ₁₈ O ₅ S ₃ N ₅ F	619	54.28	2.91	11.31
4.	P4	237	72%	C ₂₈ H ₁₈ O ₃ S ₃ N ₄ FCI	608.5	55.22	2.91	11.31
5.	P5	255	74%	C ₂₈ H ₁₈ O ₃ S ₃ N ₄ FCI	608.5	55.22	2.91	11.31
6.	P6	225	73%	C ₂₈ H ₁₈ O ₃ S ₃ N ₄ FCI	608.5	55.22	2.91	11.31
7.	P7	227	76%	$C_{26}H_{21}O_{4}S_{3}N_{4}F$	568	54.93	3.07	9.86
8.	P8	250	65%	C ₂₉ H ₁₉ O ₅ S ₃ N ₄ F	618	56.31	3.07	9.06
9.	P9	253	69%	C ₂₆ H ₂₂ O ₃ S ₃ N ₅ F	567	55.02	3.88	12.35
10.	P10	222	83%	C ₂₇ H ₂₄ O ₃ S ₃ N ₅ F	581	55.77	4.13	12.05
11.	P11	253	77%	C ₂₉ H ₂₁ O ₃ S ₃ N ₄ F	588	59.18	3.57	9.52
12.	P12	228	85%	C ₂₉ H ₂₁ O ₃ S ₃ N ₄ F	588	59.18	3.57	9.52
13.	P13	195	86%	C ₃₄ H ₂₃ O ₃ S ₃ N ₄ F	650	62.77	3.54	8.62
14.	P14	250	78%	C ₂₄ H ₁₉ O ₃ S ₃ N ₄ F	526	54.75	3.61	10.62
15.	P15	223	80%	C ₂₈ H ₁₇ O ₃ S ₃ N ₄ FCl ₂	643	52.25	2.64	8.71
16.	P16	228	78%	C ₂₈ H ₁₇ O ₃ S ₃ N ₄ FCl ₂	643	52.25	2.64	8.71
17.	P17	241	76%	C ₂₉ H ₂₁ O ₄ S ₃ N ₄ F	604	57.62	3.48	8.27
18.	P18	225	72%	C ₂₈ H ₁₇ O ₃ S ₃ N ₄ F ₂ Cl	626.5	53.63	2.71	8.94
19.	OX1	177-179	82%	C ₃₆ H ₂₃ O ₄ SN ₆ F	654	66.06	3.52	12.84
20.	OX2	180	83%	C ₃₆ H ₂₃ O ₄ SN ₆ F	654	66.06	3.52	12.84
21.	OX3	185	87%	C ₃₆ H ₂₃ O ₄ SN ₆ F	654	66.06	3.52	12.84
22.	OX4	175	73%	C ₃₆ H ₂₃ O ₂ SN ₅ FCI	643.5	67.13	3.57	10.88
23.	OX5	178	74%	C ₃₆ H ₂₃ O ₂ SN ₅ FCI	643.5	67.13	3.57	10.88
24.	OX6	195	85%	C ₃₆ H ₂₃ O ₂ SN ₅ FCI	643.5	67.13	67.13	10.88
25.	OX7	190	79%	C ₃₄ H ₂₆ O ₃ SN ₅ FCI	603	67.66	4.31	11.60
26.	OX8	185	65%	C ₃₇ H ₂₄ O ₄ SN ₅ FCI	653	67.99	3.67	10.72
27.	OX9	142	68%	$C_{34}H_{26}O_3SN_5FCI$	602	67.77	4.49	13.95
28.	OX10	202-203	76%	C ₃₇ H ₂₆ O ₃ SN ₅ FCI	639	69.48	4.07	10.95
29.	OX11	165	72%	C ₃₆ H ₂₆ O ₃ SN ₅ F	639	69.48	4.07	10.95
30.	OX12	150	81%	C ₃₆ H ₂₂ O ₂ SN ₅ FCl ₂	678	63.72	3.24	10.32

Table 1: Analytical data

Com. code L CFA 2AB ABQ	hand HIN a A		Cyclic cm ⁻¹	L		(ē		
3433 3479 3450	H ₂ cm ⁻¹	Arc=c c=N		C=F cm ⁻¹	C-CI cm ⁻¹	NO2 cm	CH ³ cm ⁻¹	C-N cm ⁻¹	SO ₂ cm ⁻¹
3479 3450		1494		1259	762				
3450		1460	1646	1193	685	ı	ı	ı	
		1455	1612	1186	706		I	ı	
3478		1452	1635	1190	688		ı	ı	
3450		1520	1650	1010	815		1295	ı	1330
3380		1530	1630	1000		650	1280		1360
3390		1535	1640	066		630	1270		1390
3430		1480	1632	1140		625	1275	ı	1388
3437		1465	1640	1090	798		1295		1385
3445		1468	1648	1012	792		1282	ı	1375
3432		1475	1642	1185	780		1285		1385
3390		1490	1632	1070			1268	ı	1395
3485		1510	1612	1060			1265	ı	1405
3478		1505	1642	1038			1267		1408
3455		1475	1658	1042			1260	ı	1388
3462		1520	1662	1042		·	1280	ı	1385
3460		1422	1614	1081			1275		1382
3445		1480	1628	1087			1270	ı	1375
3435		1484	1688	1087	,	ı	1288	ı	1391
3442		1490	1640	1058	780	·	1290	ı	1395
3460		1412	1652	1055	792	ı	1295	ı	1402
3479		1500	1648	1050			1305		1408
3451		1510	1645	1040	782	ı	1285	ı	1408
3460		1520	1645	1090	760	ı	I	1305	ı
3420		1488	1648	1020	ı	670	ı	1310	ı
3428		1478	1638	1040	ı	680	ı	1318	ı
3444		1472	1635	1030	ı	675	ı	1320	ı
3448		1481	1676	1032	772	ı	ı	1315	ı
3440		1466	1680	1038	778		ı	1318	
3450		1454	1675	1042	765		ı	1315	ı
3480		1455	1650	1011	,	,	ı	1335	
3459		1478	1652	1018			ı	1317	
3479		1488	1642	1028	ı	ı	ı	1307	ı
3488		1490	1618	1037	ı	ı	ı	1305	
3460		1451	1622	1049			ı	1318	ı
3458		1442	1624	1079	788		ı	1315	

Jayachandran, Orient. J. Chem., Vol. 24(2), 495-506 (2008)

497

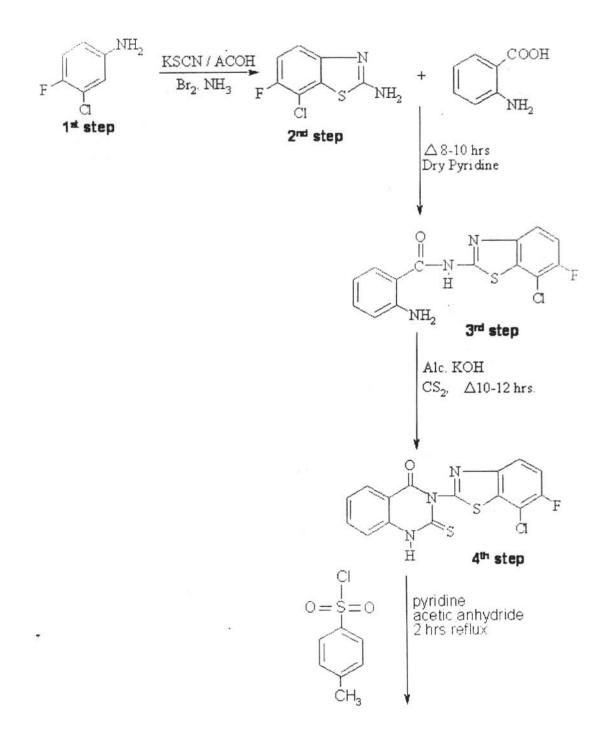
Synthesis of 2-amino-N-(2-benzothiazol 6fluoro-7-chloro)benzamide

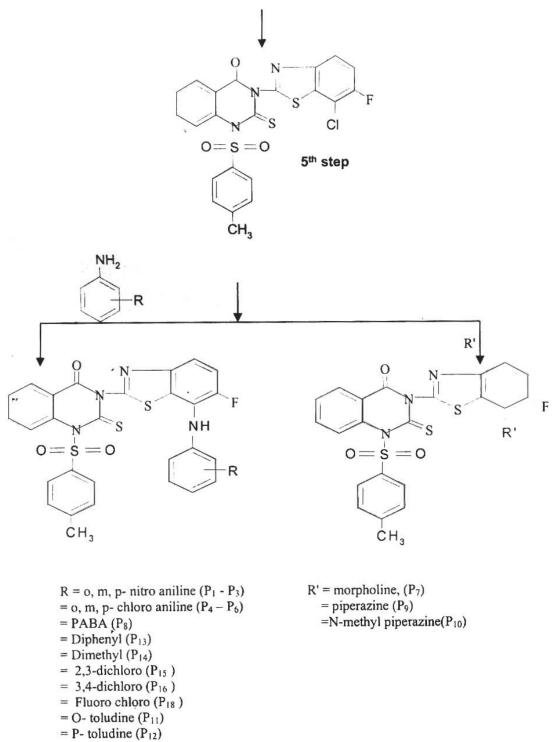
Anthranilic acid (4.0 g, 0.029 mol) and 2amino-benzothiazole (5.22 g, 0.026 mol), were dissolved in dry pyridine (20 ml, 0.25 mol). The solution was refluxed for 8 hr. The solution was cooled and poured in water. The separated mass was filtered, washed with water and dried. The product was recrystallized using ethanol.

Synthesis of 2-thione-3-(2-benzothiazol 6-fluoro-7-chloro)-4-(3H)-quinanzoliones

To an ice cold solution of potassium hydroxide (0.1 g, 0.02 mol) in dry ethanol (50 ml), 2-amino-N-(2'-benzothiazolyl 6'-fluoro-7'-chloro) benzamide (2.6 g, 0.008 mol) and carbon disulphide (6.0 ml, 0.078 mol) was added with stirring. The solution was refluxed for 10 hr and cooled. The quantity of solvents was reduced by distillation. The separated solid was filtered, washed with dry ether and dried. The product was recrystallized from ethanol.

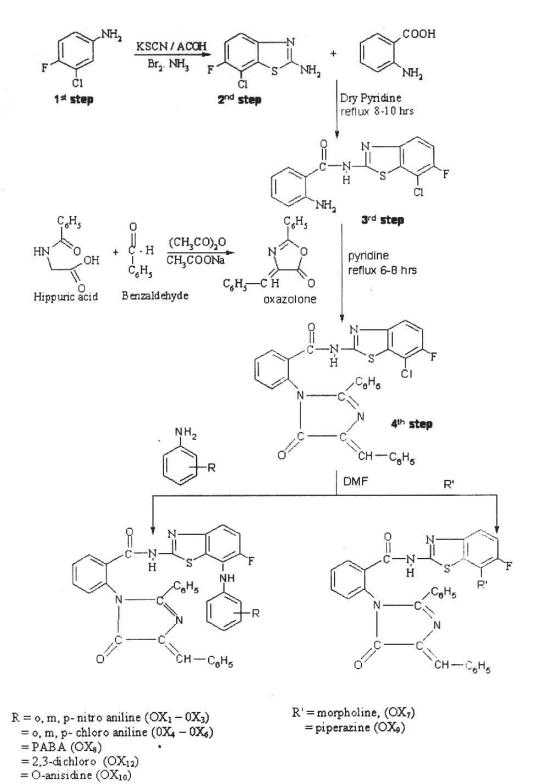
synthesis of 3-(7-chloro-6-fluoro-1,3benzothiazol-2-yl)-1-[(4-methyl phenyl) sulfonyl]-2-thioxo-2,3-dihydroquinazoline-4(1H)one


The (0.013 mol, 4.72gm) of 3(7-chloro-6fluro-1,3-benothiazole-2yl)-1-[(4-methyl phenyl) sulfonyl]-2-thioxo-2,3-dihydroquinazoline-4(1H)-one was taken in pyridine (4ml) and acetic anhydride (20ml) and p-toluene sulphonyl chloride (0.01mol, 1.71 gm) were added and the mixture was kept in oild bath for refluxed about 2hrs. The mixture was cooled and poured into the ice water. The product was recrystalized using ethanol.


Synthesis of 3(7-substituted-6-fluoro-1,3benzothiazole-2yl-1-[(4-methyl phenyl) sulfonyl] 2-thioxo-2,3-dihydroquinazoline-4(1H)-one

To 0.01 mol of 3(7-chloro-6-fluro-1,3benothiazole-2yl)-1-[(4-methyl phenyl) sulfonyl] thioxo-2,3-dihydroquinazoline-4(1H)-one was treated with equimolar quantity (0.01mol).

S No.	Spectra no.	Compound code	Hydrogen	δ (ppm)	Multiplity	Solvent
1	39	P ₁	Ar-H	7.1-7.5	Multiplet	DMSO
			$-CH_3$	2.7	Singlet	
2	40	P ₅	Ar-H	7.2-7.7	Multiplet	DMSO
			-CH ₃	2.2	Singlet	
3	41	P ₇	Ar-H	7.2-7.7	Multiplet	DMSO
			-CH ₃	2.2	Singlet	
4	42	P ₉	Ar-H	7.2-7.7	Multiplet	DMSO
			-CH ₃	2.2	Singlet	
5	43	OX ₁	-Ar-H	6.6-7.9	Multiplet	DMSO
			-Ar-CH-	6.2	Singlet	
			-1H-NH-	8.5	Singlet	
6	44	OX ₅	-Ar-H-	6.6-8.1	Multiplet	DMSO
			-Ar-CH-	6.2	Singlet	
			-1H-NH-	8.8	Singlet	
7	45	OX ₇	-Ar-H-	7.0-7.5	Multiplet	DMSO
			-Ar-CH-	6.7	Singlet	
8	46	OX ₉	-Ar-H-	6.9-7.5	Multiplet	DMSO
			-Ar-CH-	6.9	Singlet	
			-1H-NH-	7.9	Singlet	


Table 3: NMR spectral data

= O- anisidine(P_{17})

Scheme 1 Contn.

= P-anisi dine (OX₁₁)

S.	Name of the		Mean zone of	inhibition (in mn	n)*
No.	compounds	Staphyloco	occus aureus	Escher	richia coli
		50mg	100mg	50mg	100mg
1.	Procaine penicillin	20	24	-	-
2.	Streptomycin	-	-	18	24
3.	P ₁	12	14	12	13
4.	P ₂	10	13	10	12
5.	P ₃	13	15	11	12
6.	P ₄	12	15	9	11
7.	P ₅	10	11	9	12
8.	P ₆	11	14	12	11
9.	P ₇	9	13	9	11
10.	P ₈	10	14	12	12
11.	P ₉	10	10	10	12
12.	P ₁₀	10	12	9	10
13.	P ₁₁	11	13	11	13
14.	P ₁₂	11	14	9	12
15.	P ₁₃	12	13	10	12
16.	P ₁₄	11	15	9	11
17.	P ₁₅	9	13	11	10
18.	P ₁₆	10	15	9	12
19.	P ₁₇	12	13	9	10
20.	P ₁₈	12	14	9	11
21.	OX ₁	10	14	11	12
22.	OX ₂	12	14	10	12
23.	OX ₃	13	15	11	11
24.	OX_4	13	14	9	10
25.	OX ₅	10	11	10	12
26.	OX ₆	12	12	10	11
27.	OX ₇	12	14	9	10
28.	OX ₈	10	13	11	11
29.	OX ₉	9	12	9	11
30.	OX ₁₀	9	10	11	12
31.	OX ₁₁	10	13	12	13
32.	OX ₁₂	11	14	9	12

Table 4: Antibacterial activity

s.	Name of the		Mean zone of	inhibition (in mn	n)*
No.	compounds	Staphyloco	ccus aureus	Escher	richia coli
		50mg	100mg	50mg	100mg
1.	Procaine penicillin	19	23	-	-
2.	Streptomycin	-	-	18	21
3.	P ₁	10	13	10	12
4.	P ₂	11	14	11	14
5.	P ₃	11	13	9	11
6.	P ₄	9	12	9	10
7.	P ₅	10	14	10	10
8.	P ₆	12	14	10	12
9.	P ₇	12	15	12	13
10.	P ₈	13	16	11	13
11.	P ₉	12	13	9	11
12.	P ₁₀	10	14	11	11
13.	P ₁₁	10	15	11	13
14.	P ₁₂	12	13	10	11
15.	P ₁₃	10	12	11	13
16.	P ₁₄	10	13	9	12
17.	P ₁₅	10	13	10	12
18.	P ₁₆	9	11	11	12
19.	P ₁₇	10	12	10	13
20.	P ₁₈	11	12	9	10
21.	OX ₁	12	13	10	12
22.	OX ₂	10	12	10	13
23.	OX ₃	10	13	9	12
24.	OX_4	12	13	10	10
25.	OX ₅	9	10	10	12
26.	OX ₆	10	13	11	12
27.	OX ₇	10	14	9	11
28.	OX ₈	11	14	11	13
29.	OX ₉	12	15	12	14
30.	OX ₁₀	9	12	9	12
31.	OX ₁₁	10	14	9	11
32.	OX ₁₂	11	14	12	13

Table 4: Antibacterial activity

Of various substituted aromatic amines, PABA, morpholine amine, piperazine, N-methyl piperazine, O-toludine, P-toludine, O-anisidine, dipphenyl amine, dimethyl amine, 2,3-dichloro aniline,3,4-dichloro aniline and fluro chloro aniline refluxed for 2hrs. In the present of DMF. Then mixture was cooled and poured in the crushed ice. The solid separated was filtered off, dried and recrystalized from benzene, acetone and absolute alcohol.

Preparation of 4-benzylidene-2-phenyl oxazol-5-one (oxazolone)

A mixture of 27g (26ml, 0.25ml) or redistilled benzaldeyde, 45g (0.25 mol) of benzoylglycine 77g (71.5ml, 0.75mol) of acetic anhydride and 20.5 gm (0.25mol) of anhydrous sodium acetate was placed in a 500ml conical flask and heated on an eletric hot plate with constant shaking. As soon as the mixture has liquified completely, the flask was transferred to water bath

S. No.	Name of the compounds	Candida ali 50mg	<i>l</i> lean zone of inhi bicans 100mg	bition (in mm)* <i>Aspergillus</i> 50mg	niger 100mg
1.	Streptomycin	19	24	19	23
2.	P ₁	11	13	10	12
3.	P ₂	09	11	10	13
4.	P ₃	10	13	09	11
5.	P ₄	10	15	11	14
6.	P ₅	11	13	10	13
7.	P ₆	10	14	09	13
8.	P ₇	12	14	09	13
9.	P ₈	9	13	10	13
10.	P ₉	10	13	11	14
11.	P ₁₀	12	13	11	13
12.	P ₁₁	11	13	12	14
13.	P.,	10	14	10	12
14.	P ₁₃	10	13	10	13
15.	P ₁₄	09	11	09	12
16.	P ₁₅	12	14	09	11
17.	P ₁₆	10	14	12	15
18.	P ₁₇	09	14	13	15
19.	P ₁₈	09	11	12	14
20.	OX,	09	12	10	13
21.	OX,	10	13	11	13
22.	OX	10	14	10	12
23.	OX	11	14	09	12
24.	OX ₅	10	13	12	15
25.	OX ₆	10	12	12	14
26.	OX ₇	10	11	10	13
27.	OX ₈	09	11	9	10
28.	OX	10	14	10	12
29.	OX ₁₀	09	11	09	11
30.	OX,	09	12	09	12
31.	OX ₁₂	11	15	09	12

Table 5: Antifungal activity

and refluxed for 2hrs. 100ml of ethanol was added slowly to the contents of the flask. The mixture was allowed to stand overnight. The crystalline product obtained was filtered by suction. It was washed with two 25ml portions of boiling water and dried at 100°C.

The yield of pure oxazolone is 40g (64%) m.p. 165-166°C. Recrystallisation from benzene raised the m.p. to 167-168°C

Synthesis of 2-[(4Z)-4-benylidine-2-phenyl-5oxo-4,5-dihydro-1H-imidazol-1-yl]-N-(7-chloro-6fluoro-1,3-benzothiazol-2-yl)benzamide

2-amino-N(2-benzothiazolyl-6-fluoro-7chloro) benzamide (0.01mol, 3.215gm) and oxazolone (0.01mol, 2.49gm) was refluxed in pyridne was distilled off and resulting mass poured into crushed ice and neutralized from dilute hydrochloric acid. The product was recrystalised using ethanol.

Synthesis of 2-[(4Z)-4-benylidine-2-phenyl-5oxo-4,5-dihydro-1H-imidazol-1-yl]-N-(7substituted-6-fluoro-1,3,-benzothiazol-2yl)benzamide

0.005 mol of 2-[(4Z)-4-benylidine-2-phenyl-5-oxo-4,5-dihydro-1H-imidazol-1-yl]-N-(7-chloro-6fluoro-1,3-benzothiazol-2-yl)benzamide was treated with eqimolar quantity (0.005mol) of various substituted amines, morpholine, piperazine, PABA, Oanisidine, P-anisidine ad 2,3-dichloro aniline refluxed for 2 hrs in the presence of DMF. Then the mixture was cooled and pured into the crushed ice. Solid separated was filtered off, dried and recrystalised from benzene, acetone and absolute alcohol.

RESULTS AND DISCUSSION

Anti-bacterial activity

Synthesis and Pharmacological screening of 3-{7-substituted6-fluoro-1,3-benzothiazol -2-yl}-1-[(4-methyl phenyl) sulfonyl]-2-thioxo-2,3dihydroquinazolin-4(1H)-one and 2-[(4Z)-4benzylidine-2-phenyl-5-oxo-4,5-dihydro-1Himidazole-1-yl]-N-(7-substituted-6-fluror-1,3benzothiaozl-2-yl) benzamide were tested for the antibacterial activity against following bacteri;

- Ś S.aureus
- Streptococci (gram +ve) and
- ´ E.coli,

Pseudomonas aureus (gram-ve).

The test compounds P_2 , P_3 and OX₃ showed moderate antibacterial activity against *S.aureus* (gram +ve) compare to standard drug Procaine Penicillin.

Compounds P_1 , P_6 and OX_{11} showed promising antibacterial activity against, *E. coli* (gramve) compared to standard drugs and streptomycin.

Compounds P_6 , P_7 , P_8 , P_{12} and OX_{12} showed promising antibacterial activity against, gram +ve (*Streptococci*) at both lower and higher concentration (50µ/ml).

Compound P_7 and OX_2 , OX_{12} showed moderate activity against gm -ve (*Pseudomonas*) at both lower and higher concentration compare to standard drug Streptomycin.

Anti-fungal activity

Synthesis and Pharmacological screening of 3-{7-substituted6-fluoro-1,3-benzothiazol -2-yl}-1-[(4-methyl phenyl) sulfonyl]-2-thioxo-2,3dihydroquinazolin-4(1H)-one and 2-[(4Z)-4benzylidine-2-phenyl-5-oxo-4,5-dihydro-1Himidazole-1-yl]-N-(7-substituted-6-fluror-1,3benzothiaozl-2-yl) benzamide were tested for antifungal activity against *Candida albicans* and *Aspergillus niger.*

Among the compounds tested, P_4 , P_7 and OX_3 , OX_4 , OX_9 , OX_{15} showed good activity against *Candida albicans* at both concentration compare to standard Griseoflavin.

 P_{11} , P_{16} , P_{17} and OX_5 , OX_6 showed significant activity agasint *Aspergillus niger* compare to standard Griseoflavin.

ACKNOWLEDGEMENTS

The authors are thankful to Shri. Sha. Bra. Chandramouleshwara Shivacharya Swamiji, President, Sri. T. M. Chandrashekaraiah M.A. Secretary, T.M.A.E. Society Harapanahalli. for providing necessary facilities through the Principal, S.C.S. college of Pharmacy, Harapanahalli to carryout this work.

REFERENCES

- 1. Narayan UL, Nerkar AG, Panda CS, *Int. J. Chem. Sci.* **4**(1): 93-100 (2006).
- Pattan, SR, Reddy, VVK, Pattan, JS, Venkataramanna MV, Prajapati PN, Hemashettar BM. *Indian J. Heterocyclic Chem.*, **15**: 79-80 (2005).
- Abdel Ghany aly el-helby, Mohammed Hemeda abdel wahed. Acta Pharm., 53: 127-138 (2003).
- 4. Turner, R.A., 15th ed (ER R.A. Turner) Academic Press, New York., 165-172 (1965).
- Chakole, RD, Ammerkar ND, Khedekar PB, Bhusari KP. *Indian. J. Heterocyclic Chem.*, 20: 27-30 (2005).
- Srinivasa GM, Jayachandra, E, Shivakumar
 B. Sreenivasa Rao. D. Orient. J. Chem., 20(1): 103-110 (2004).
- Sreenivas Rao, D Jayachandra E, Sreenivasa GM adn Shivakumar B, Orient. J. Chem., 21(1): 113-116 (2005).

- Hitesh, Patel D. Mistry BD, Desai KR, *Orient J. Chem*, **19**(2): 477-80 (2003).
- Kamlesh, Patelm J, Samir, Patel A, Shveta Joshi P, Rajni M Patel. Orient J. Chem., 19(2): 399-404 (2003).
- 10. Hirpura SB, Parikh KA, Merja BC, Parekh HH, *Ind. J. Chem.*, **42**B:1172-75 (2003).
- 11. Abha Bishmol, Pandey VK, Rashmi Saxena, Ind. J. Chem. **41**B: 1978-79 (2002).
- 12. Bhusari KP, Khedekar PB, *et al., Ind. J. Heterocylic Chem.,* **9**: 213-16 (2000).
- 13. Pattan SR, Narendra SN, Jayshri, *Ind. J. Heterocylic Chem.*, **11**: 333-34 (2002).
- 14. Bhusare SR, Pawar RP, Vibhute YB, *Ind. J. Heterocylic Chem.*, **11**: 78-80 (2003).
- Shastry CS, Joshi SD, Aravind MB, Verapur VP, Ind. J. Heterocylic Chem., 13: 57-60 (2003).
- 16. Desai RM, Desai JM, Shah, *Ind. J. Heterocylic Chem.*, **8**: 329-34 (1999).