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ABSTRACT

There are no theoretical or mathematical reports of a statistical approach in NMR shielding
and nucleus independent chemical shifts, while the asymmetry (n) and skew () parameters are
fluctuated in short distances and are alternative in long distances. In the case of axially symmetric
tensor, c,, equals either ¢, or o, skew is k= +1 and by changing asymmetry between 0 <n < +1
skew will be changed between -1 < k < +1, meanwhile the parameter “<” is zero when ¢,, = . In

this work, we have investigated a statistical method by computing of Nucleus-Independent Cherlwsﬁcal
Shifts (S-NICS) in point of probes motions in a sphere of shielding and deshielding spaces of SiO,
rings. Monajjemi in the previous work®4, has investigated a new method as the name “ S-NICS”
which this method is suitable for calculation the aromaticity in the non-benzene rings such as SiO,
rings which is a famous catalyst for organic chemical synthesize and reaction. Although S-NICS
values for some molecules such as benzene, borazine and naphthalene can be indicated as the
aromaticity criterion, for other cases such as B N H_and their hydrogenated derivatives, these
values indicate electromagnetic index. Finally, we have introduced a schematic diagram of statistical-
nucleus independent chemical shifts for ab-initio calculations in Gaussian program, Games or other
software.
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INTRODUCTION The chemical shift of a nucleus in molecular

rings occurs from the nuclear shielding effect of an

Electronic towards the structural aspects  applied magnetic field. The magnitude of such an

have proved to be an important key in physical organic ~ induced magnetic field is commensurate with the
chemistry in the explanation of structures, reactivity  stability of the applied external magnetic field (B).
and stabilities of various organic compounds and  Thus the effective field (B,,) at the nucleus is given
natural product molecules’ . by B,,=B, (1- ), where “1” is the unit matrix and
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o, is the second-rank nuclear shielding matrix. In
ordinary NMR experiments B, is a uniform field along
the z-axis and the resonance NMR frequency, v, of a
given nucleus in a molecule is therefore dependent to
its gyromagnetic ratio, v, as specified by v, = (y,/2m)
B,(1-0)?

The nucleus-independent chemical shift
(NICS) is a computational method that calculates
the absolute magnetic shielding at the center of
the ring taken with reversed sign. Negative NICS
values indicate aromaticity and positive values
antiaromaticity®*.

For further investigation of aromaticity,
another method called the harmonic oscillator
model of aromaticity (HOMA)® has been applied,
and is distinguished as a normalized sum of the
squared deviations of bond length from the normal
value’. An aromatic compound has a HOMA value
of one whereas a non-aromatic compound has the
value 0.

Several criteria for explanation of aromaticity
can be considered and may divided into five
categories, which are: (1) the energetic approach
to aromaticity (2) geometrical considerations (3)
reactivity of aromatic compounds (4) magnetic
parameters of aromaticity®'°, and the (5) Statistical-
Nucleus-Independent Chemical Shifts approach
(S-NICS) which is the subject of this work.

In using the energetic criterion for
establishing the aromaticity of a compound, it is
evident that the excess of stability of the structure
is due to cyclic electron delocalization relative to
suitable references systems''-'2. Moreover, Cooper,
Gerratt, and Raimondi'® have developed some
appropriate reference systems for calculation of the
resonance energy. In using structural considerations,
the geometry should show a decrease in aromaticity
of bond alternation which have been reported
by Julg and Kruszewski in several quantitative
measurements’ . Monajjemi and Boggs have
shown the low aromaticity of borazine in the rings
of B,;N,, and B,,N,, by the non-bonded interaction

18" "18
method's18,

Regarding NMR chemical shifts and
diamagnetic susceptibilities, protons attached to
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aromatic rings typically undergo a downfield shift from
the olefin region; therefore, an up-field shift appears
in the proton NMR spectrum . So aromaticity can
be defined as the ability of a compound to sustain
an induced ring current, these compounds are
then called dia-tropic and antiaromatic compounds
are called Para-tropic. NMR chemical shifts and
diamagnetic susceptibilities , anisotropy is important
when measuring a compound’s aromaticity 2°.

Recently aromaticity in terms of nucleus-
independent chemical shifts in long distances of
NICS (1, 2.5, 3, and 3.5) A, around the ring center,
NICS (0), at the center of ring plane and aromatic ring
current shielding (ARCS) were compared in several
studies. In short range of distances (r<0.3) there are
no theoretical or mathematical reports of statistical
approach in nucleus independent chemical shift
calculations, while the asymmetry (¢) and skew (&)
parameters fluctuate in behavior around the center
of rings.

For further discussion of statistical approach
in nucleus independent chemical shift calculations,
especially in short range of distances, we have
focused in relaxations of CAS, dipole-dipole and
contribution 2'. We have shown that the asymmetry
(m) and skew (k) parameters fluctuate in behavior
around the center of rings due to minimum isotropy
in the center. The most fluctuations are appearing
around the minimum or maximum functions
mathematically.

Nuclear spin relaxation studies in the gas
phase had started in 198722, Spin-relaxation data
in the gas phase provide a stringent test of the
anisotropy of an existing intermolecular potential.
In some cases, spin-relaxation data is a powerful
test of the anisotropic part of the intermolecular
interaction. There are other observables such as the
Beenakker effects, depolarized Rayleigh scattering,
sound absorption, and pressure broadening of
rotational lines in the IR, which are also sensitive to
the anisotropy of the potential.

The basis of this work is on random motions
of probes in the shielding and deshielding spaces
of aromatic and antiaromatic molecules to consider
maximum abundant of points in due to dipole—
dipole, CSA and contribution relaxations. The main
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purpose of random displacement of various probes
inside of shielding and deshielding spaces are for
understanding of mechanism and consequences of
anisotropic spin—spin interactions in short ranges,
Although the relaxation of proton and hydrogen
probes are much less, than the large ion probes
such as Li*.

In CSA, relaxation Chemical shift anisotropy
(CSA) originates from the orientation dependence of
the chemical shift, and hence changes under rotation
of the molecule and induces minor variations in the
magnetic Ueld at the site of the nucleus.

The time dependence of anisotropic
interactions does however contribute to relaxation
but the average amount can be time independent.

In this study, the major components of
Haeberlen parameters, and chemical shift anisotropy
(CSA) tensors have been calculated for borazine,
benzene, naphthalene, B N H rings (n=12, 15, 18)

n n x

andB,N,H (n=0,2,4,6,8,).The numerous random
points around the center of those molecules have
been produced by generation of pseudo-random
numbers, which are distributed in a Gaussian

function in the interval [0, 1).

The hydrogenated and dehydrogenated
structures of borazine and B N, rings have been
investigated to understand more about the unknown
parameters of those rings in point of electromagnetic,
aromaticity, delocalization mechanism, conjugated
system and hyperactive conjugation in BN alternate
systems. Therefore, the hydrogenation and
dehydrogenation of borazine has moved gradually
in two directions toward cyclotriborazane (B,N,H,,)
and BN, respectively .

Our result has been compared by the
energy decomposition analysis (EDA) method . The
total m bonding energy and the  conjugation between
three B-N n bonds in borazine is signilicantly smaller
than that for benzene and magnetically properties
shows a singular behavior in borazine and B,N,H,
rings .

Fowler and Steiner computed the total
current density induced by a magnetic Geld
perpendicular to the molecular plane of borazine.
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They found that the © currents are localized in three
islands of circulation on the nitrogen atoms and
concluded that borazine is moderately aromatic .

Nucleus-independent chemical shift values
(NICS) show a little and no evidence of ring currents,
indicating with no aromaticity for borazine due to the
polar B-N bond .In contrast, the S-NICS data shows
a weak but stable aromaticity for borazine according
to the 1999 dednition provided by IUPAC delnition
of aromaticity.

We have optimized various isomers of B,N,
and B,N, to understand which members of each
group are more stable. Scheme 1 shows that in both
groups the planar ring isomer of BN, and B,N, with
B and N alternate are more stable than the others.

We have discussed the electronic properties
in their structures to find the reason for relative
stability in these rings in point of isotropy and
anisotropy. Finally the electronic structures of B.N_
rings of (B,N,) , for (N=4, 5, 6) of B ,N,, B,;N,. and
B,gN,; has been studied by S-NICS method .

Magnetite (Fe,O,) is the earliest discovered
magnet which crystallizes in the inverse cubic
spinel structure. Each cubic spinel cell contains
eight interpenetrating oxygen and the tetrahedral
sites, occupied by one-third of the iron atoms, form
a diamond structure. The remaining Fe atoms are
located at the octahedral sites with the nearest-
neighbor atoms lined up as strings along six different
[110] directions. In other words Fe,O, consists of
a cubic close packed array of oxide ions where all
of the Fe?* ions occupy half of the octahedral sites
and the Fe®* are split evenly across the remaining
octahedral sites and the tetrahedral sites .

Both FeO and y-Fe, O, have a similar cubic
close packed array of oxide ions and this accounts
for the ready interchangeability between the three
compounds on oxidation and reduction as these
reactions entail a relatively small change to the
overall structure therefore, Fe304 samples can be
non-stoichiometric? .

Fe,O, is ferromagnetic with a curie
temperature of 858 K and The ferromagnetism of
Fe,O, arises because the electron spins of the Fe"
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and Fe'"ions in the octahedral sites are coupled and
the spins of the Fe' ions in the tetrahedral sites are
coupled but anti-parallel to the former.

Fe,O, is used as a catalyst in the Haber
process and in the water gas shift reaction .

The latter uses an HTS (high temperature
shift catalyst) of iron oxide stabilized by chromium
oxide. This iron-chrome catalyst is reduced at
reactor start up to generate Fe,O, from o-Fe,O, and
Cr,0,to CrQ, . Fe,0, is an electrical conductor with
conductivity significantly higher than Fe,O,, and this
is ascribed to electron exchange between the Fe'
and Fe'" centers?.

Magnetite particles are of interests in
bioscience applications such as in magnetic
resonance imaging (MRI) since iron oxide magnetite
nanoparticles represent a non-toxic alternative
to currently employed gadolinium-based contrast
agents. However, due to lack of control over the
specific transformations involved in the formation of
the particles, truly superparamagnetic particles have
not yet been prepared from magnetite, i.e. magnetite
nanoparticles that completely lose their permanent
magnetic characteristic in the absence of an external
magnetic field .

As a half-metallic material, Fe,O, shows
normal metallic behavior in the minority spin, while
at the same time there is a gap of ~ 0.5 eV in the
majority spin at the Fermi level. From an itinerant
point of view, the high conductivity (~250 Q'cm-) of
the high-temperature phase is a natural consequence
of the partially filled 3 d band of the octahedral -site
Fe atoms .

Production of nano-particles can be
performed chemically by taking for example mixtures
of Fe' and Fe" salts and mixing them with alkali to
precipitate colloidal Fe,O,. The reaction conditions
are critical to the process and determine the particle
size . Nano particles of Fe,O, are used as contrast
agents in MRI scanning . Magnetic nanoparticles
have attracted much interest not only in the field of
magnetic recording but also in the areas of medical
field of magnetic sensing. Especially, nanoparticles of
iron oxide are reported to be applicable as a material
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for use in drug delivery systems, cancer therapy and
MRI.

On the other hand, most of the applications
require magnetic particles to disperse in a non-
magnetic matrix. The matrixes play an important role
in determining physical properties of the composite
nanoparticle in addition to providing a means of
particle dispersion .

Another important characteristic of the
matrix is to act as the protection of magnetic
nanoparticles against corrosion or oxidation
especially in the case of metallic nanoparticles .
Among carbon-based or oxide matrixes such as
silica, alumina, titanic oxide or zeolite, silica can be
a most suitable material for the matrix because of its
non-toxicity, inertness to magnetic field and easiness
to form cross-lined network structure .

Silica surfaces are chemically stable,
biocompatible and can be easily functionalized for bio
conjugation purpose. Hence silica-coated magnetite
composite nanoparticles (Fe,O,@SiO,) have been
synthesized by many groups . Recently, silica coated
magnetite functionalized with a-mercapto-propyl-
trimethoxy-silane have been successfully applied
to extract Cd?*, Cu?*, Hg*, and Pb?* from water in a
wide pH range .

Catalysts play a very important role in
modern science and technology as they improve
reaction yields; reduce temperatures of chemical
processes in synthesis. There are two main types
of catalysis, heterogeneous, where the catalyst is
in the solid phase with the reaction occurring on the
surface and homogeneous, where the catalyst is in
the same phase as the reactants .

The heterogeneous catalysts can be readily
separated from the reaction mixture but the reaction
rate is restricted due to their limited surface area .
Meanwhile homogeneous catalysts can react very
fast and provide a good conversion rate per molecule
of the catalyst, but since they are miscible in the
reaction medium, it can be a painstaking process to
remove them from the reaction medium . The difficulty
in removing homogenous catalysts from the reaction
medium leads to problems in retaining the catalyst
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for reuse. The bridge between heterogeneous and
homogeneous catalysts can be achieved through
the use of Fe,O, nanoparticles. Fe,O, particularly is
useful and important group of nanoparticles in the
magnetic nanoparticles (MNPs) groups which show
strong magnetic moments that are rarely retained
outside of the presence of an external magnetic
field. These nanoparticles may be composed of a
series of materials such as metals like cobalt and
nickel, alloys like iron/platinum and metal oxides
like iron oxides®® and ferrites®. Fe,O, Nanoparticles
of silica catalytic material provide the benefit of
increased surface area which allows for an increased

Byl
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reaction rate?® . Moreover, nanoparticles can permit
additional catalytic functionalities due to their unique
properties®® .As instance, the MNPs being used to
extract selected cells from biological samples and
cultures®.

A few catalysis of magnetic nanostructures
have been developed up to now, including the
preparation of nanocomposite materials consisting
of magnetic core nanoparticles which have been
coated by the shell of other catalytically active
nanomaterials. Another type of catalyst which is of
interest for organic synthesis involves the use of

Byganfl sy

Scheme1: (a) Some optimized isomers of B;N, and their point groups, (a' ) some optimized

isomers of BN,

and their point groups, in both of them, the rings with alternation of B and N

are more stable and the arrangements of stability are shown. (b) The sphere region of S-NICS in

B,.N

optimized structures of B,,N,,, B,.N,,

127 712)

and B__.N
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Rings .all molecules are optimized with B,LYP/

EPR-II level. (C) The sphere region of S-NICS in optimized structures of Si, O

18727



SOOFI et al., Orient. J. Chem., Vol. 32(5), 2327-2345 (2016)

organic molecules. These molecules show a large
degree of specificity for their reactions and may
allow a more successful reaction than conventional
chemistry. Overall, the binding of catalysts to
magnetic nanoparticles allows the retention of these
materials after the end of the reaction for reuse.

Theoretical Background
NMR Shielding
The reduced anisotropy [ = (6, - 6..)
- 6,.)] (1) and anisotropy (Ac) with relation
3
Ao == . L
of 2 { including shielding asymmetry (n) can
be defined as:

= (Og

1
Ao =g, — E(Jxx + 0y )

_ (D'n. — Ox ) _ 3{:5}.3. - ﬂ'xx)
"=\"7 =T 2As
...(3)
In some cases of an axially symmetric
tensor, (csyy - 0,, ) will be zero and hence n = 0.
However, the asymmetry (n) parameter indicates
that how much the line figure deviates from an axially
symmetric tensor, therefore, (0 <n < +1).

The shielding tensor can be expressed as
the sum of a symmetric, an anti-symmetric, and a
scalar terms, which are rank 2, rank 1 and rank zero
tensors respectively as: Q = Q® + QO + Q.

The total chemical shielding tensor “r’ is
a non-symmetric tensor that can be decomposed
into three independent tensors as: (1), an isotropic
component, (2) a traceless symmetric component,
and (3) a traceless anti-symmetric component .
In spherical tensor representation, as Haeberlen
have pointed out, at a fundamental level tensors are
better represented in spherical fashion, such that a
general second-order property “c” may be written
as 6=0"°0)+g"N4 M@ (4), where the number in
brackets refers to tensor rank. Spherical tensors
are intrinsically involved in considering the effects
of tensor quantities on density matrix evolution, so
the use of this representation is inevitable for such
work. It is worth noting that:

iso 2
o 2y — 3/’2 4
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am@ _ 1
0.z =3 ¢

...(5)

The proportionalities in these equations
indicate that shielding anisotropy and asymmetry can
readily be related to spherical tensor components,
thus facilitating theoretical interpretation, whereas
the relation between spherical tensor components
and span/skew is more obscure. The isotropic
tensor can be represented by a scalar average
as:

1 0 0
Oio = Ogug (D 1 D)

001 ..(6)

The symmetric component of the shielding

tensor has tensor elements with r, = r,. This tensor
is responsible for the CSA relaxation most often
described in the literature and can be diagonalized
by rotation into the shielding tensor principal
coordinate system.The anti-symmetric tensor also
induces CSA relaxation but this is almost impossible
to measure because the induced effects are close to
parallel to the external magnetic Geld which cannot
be diagonalized.

By this work, in a statistical calculation we
have shown that a time independent average of (Q*)
can be replaced of all above sum of asymmetric, an
anti-symmetric, and a scalar terms, which are rank
2, rank 1 and rank zero tensors respectively. This
method is based on random motions of probes in
the shielding and deshielding spaces of aromatic
and antiaromatic molecules to consider maximum
abundant of relaxations points in due to dipole—
dipole and spin —dipole interactions.

The magnetic environment of a spin
is seldom isotropic. Therefore, is represented by a
tensor of Span (Q) = o, - 6,, (7) and
o 3(0is0 — 022 )

[y ...(8)

In the Herzfeld-Berger notation, tensors
have explained by three parameters, which they are
combination of the major components in the standard
notation. Those are including, the span (Q), which
describes the maximum width of the model, (2 > 0),
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of the values. ®=3 and the skew is Q P (1<

The accurate formulation of the span (Q),
including the factor of (1-c,) has been described by
Q= (o, 0,,) (1-0,) (9). In the Haeberlen-Mehring-
Spiess notation, different combinations of the major
components are used to explain the line figure, and
is needed the major components become orderly
according to their segregation from the isotropic
value in this convention

The CSA relaxation rates depend on the
anisotropy parameter in the standard parameters,
of the shielding tensor, (c,,, 6,, 0,,), are labeled
according to the IUPAC rules, and they formalized
and adopt the high frequency-positive order.
Therefore, o, corresponds to the direction of
minimum shielding, with the highest frequency,
whenever o, corresponds to the direction of
maximum shielding, with the lowest frequency .

Moreover the orientation of asymmetry
tensor is given by

Kk < 6 +1), and related on the position of c,, with
consideration of ¢._, the sign of « is either positive
or negative.

iso’

Based on our calculations especially
various B N Rings, Benzene and naphthalene,
(x) is mostly positive®'°, and the negative values
are belong to some critical or boundary points. In
the case of an axially symmetric tensor, c,, equals
either o, or o, and k= +1 therefore o = /3, and
the parameter “o” and “«” are zero when c,, = 6,
and the parameter “u” used with the Herzfeld- Berger
is related to the span of a tensor. Meanwhile, the

spinning rate is given by u = Q*v_,

For a non-zero anti-symmetric tensor** give
the relaxation rates

dia,C54 2 Tr.1
R, =

n? Trz
= VB |5 —S— + A1+ | ———
ERCRl R w? T2y g( 3)1+ r.oszrf‘j

...(10)
and 62 is defined by:
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r.1

porsa_ 2 el
in.C54 _ 2 p2 .
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T2t 1+ w? 1'32
..(12)
Where 1, and t,, correspond to the

correlation times for isotropic tumbling and small-
step molecular rotation, respectively and in the case
of axial symmetry (n=0) or for isotropic tumbling
T.,= 3T, ,

Based on recent works*'% in this study,
we consider a model of SiO, rings as a molecule
for Fe,0,@SIO, catalyst using ab initio calculations
within the density functional theory (DFT) for
calculating the aromaticity of rings for organic
calculations.

RESULTS AND DISCUSSION

Total shielding constants, orientations of
the principal axes such as standard components,
Haeberlen-Mehring, and Herzfeld-Berger parameters
for Fe,0,@8Si,O,, in various statistical situations
have been calculated by DFT methods and the data

are listed in tables1-5.

In short distances of region around the
molecular centers, the asymmetric parameter (n),
and the skew (x), exhibited Gaussian distribution
based on their fluctuation behavior, which is
dependent on their distances from the center of the
molecular rings. In contrast, of those parameters,
the isotropy does not have a fluctuating behavior
and it increased by increasing its distance from the
center of the rings with a linear relationship. The
slopes of these lines are changed, and among the
levels of various distances for isolated Si,,O,, and
Fe,0,@ Si,,0,, (less than 0.2 A and more than 0.2
Afor SiO, ring, less than 0.25 A and more than 0.25
A for Fe,0,@ Si,,0,,) (Fig.1).

The isotropy during the replacing of
Fe,0,@SiO, are positive which indicates negative

SOOFI et al., Orient. J. Chem., Vol. 32(5), 2327-2345 (2016)

values for aromaticity,but the slopes are decreased
from the replacing from 0.1 to center (Fig.1).

As we have shown in Fig. 1-7, the slopes of
aromaticity curves versus distances to the center of
the Fe,O,@SiO, ring are decreased by decreasing
the distances gradually which indicates distortion
of aromatic electronic structures, and on the other
hand these slopes are increased by increasing the
distance, emphasizing a special electronic structure
in Fe,0,@SiO,. Therefore, S-NICS has an increased
ability to identify exact points in the area of shielding
space by aromaticity criterion in such compounds
via Monte Carlo stochastic calculation.

In all previous works®'°, different basis
sets yielded isotropies of various magnitude,
and the criterion of aromaticity cannot be certain
by using different methods, because in multiple
calculations the numerous basis sets can evaluate
different isotropies for two situations of one aromatic
molecule.

Itis acceptable that the difference between
isotropies in NICS values can express the quality
of the distinct aromaticity for a few molecules, but
these differences between isotropies are not able
to express the mechanism of aromaticity as well as
S-NICS.

In the S-NICS method via the statistical
calculations, the best point of the shielding space
around the center of symmetric or non-symmetric
aromatic molecules can evaluated as an aromaticity
criterion. and in this method the expectation of
the (n*) and (x*) have been calculated as the
Gaussian curve functions versus one , two or three
dimensional distances around the center of the SiO,
(Tables 1-4and Fig.1-7).

The isotropy (c,,*) which is related to all of
(n*) and (x*) and (Q*) and ({*) is the best criterion for
various aromatic molecules by the S-NICS method,
which can express both qualitative and quantitative
magnitudes for symmetric or non-symmetric
aromatic molecules (table 3).

So “k” can be calculated in two ways, the
first one by the expectation value of the Gaussian
curve (k*) and the second one with the egs. (27,28).
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Such as stochastic rules in the Monte Carlo
calculation for T = 3.14 in a circle, it is evident, that
the value of the Monte Carlo calculation will be
more accurate by increasing the random numbers
of the stochastic test, and it is significant that
lx*- k¥ [-0.0 by addition of random numbers in the
S-NICS method.

Similar to the NICS method, in S-NICS,
negative nucleus-independent chemical shifts
denote aromaticity and positive values denote
antiaromaticity. In S-NICS methods, the shielding
and deshielding spaces are significant to discuss the
mechanism of the aromatic molecules in point of ring
currents, which are the circulating d electrons in an
aromatic molecule produce opposite to the applied
magnetics field.

The stability of the isotropy criterion is
highly affected on the best places in the shielding
area spaces and it is dependent on the structures
of the aromatic rings. So by using this method,
a suitable and stable magnitude of isotropy can
calculated as an aromaticity criterion. It is obvious
that structural factors cause changes in the magnetic
field experienced by the nuclei and change the
resonant frequency. Therefore the chemical shielding
and many other factors such as electronegativity,
hydrogen bonding, and magnetic anisotropy of
d-systems will be changed because of the electrons
around the proton which produce a magnetic field,
countering the applied field. This reduces the field
experienced at the nucleus. The electrons are said to
shield the proton, an effect that is exactly dependent
on the distance of the center. In addition, S-NICS can
find the most accurate places for effective points for
calculation of isotropy as an aromaticity criterion.
The chemical shielding is a vector orientation
function for all of the shielding parameters that can
change in various places inside the shielding area
of the rings for aromatic compounds.
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The asymmetric (1), skew (k) parameters
have frequent changing or fluctuating values which
have been modeled by a Gaussian distribution. And
the shielding space around the center of benzene,
naphthalene and borazine are canonical , where
the (+) denotes the shielding and (—) indicates
deshielding areas, and anisotropy as an orientation
function has a fluctuating behavior and their values
have been changed statistically in a Gaussian
distribution.

On the other hand, the nearby protons
will experience three fields: the applied field,
the shielding field of the valence electrons and
the field due to the m systems. So field lines
opposed to the applied field cause a reduced field
in this area equivalent to shielding, anisotropic
induced magnetic field lines due to the induced
circulation of the m electron in the ring area of
benzene, naphthalene and borazine.S-NICS has
been investigated by the Monte Carlo model by
computation of nucleus-independent chemical shifts
in many points of shielding areas around the rings
of borazine, benzene and naphthalene, by choosing
specified and suitable distances (Scheme 3). The
statistical simulation by the Monte Carlo method
is the generation of pseudo-random numbers that
are distributed in a Gaussian distribution, and the
algorithm is based on a pseudorandom number
generator that produces numbers xthat are uniformly
distributed in the interval [0, 1).

These random varieties x are then
transformed via some algorithm to create a new
random variate having the required probability
distribution, (Tables 1, 2). The asymmetry (1), and
skew (k) parameters fluctuate by the changing of
tensors, while in the case of an axially symmetric
tensor, c,, equals either ¢, or 6, and a = Q/3, the
span is x= +1 by changing asymmetry between
0<n<+1.

REFERENCES

1. Minkin, V. J.; Glukhovtsev, M. N. ; Simkin, B.Y.;
Electronic and Structural Aspects, Wiley, New
York, 1984.

2. Mason, J. ; Solid State Nucl. Magn.
Reson.1993, 2, 285.

3. Schleyer, P. v. R. ; Jiao, H. ; van Eikema
Hommes, N. J. R. ; Malkin, V. G. ; Malkina, O.
L.; J. Am. Chem. Soc. 1997, 119, 12669.

4, Schleyer, P.v. R. ; Maerker, C. ; Dransfeld, A.
; Jiao, H. ; van Eikema Hommes, N. J. R. J.



2344

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

SOOFI et al., Orient. J. Chem., Vol. 32(5), 2327-2345 (2016)

Am. Chem.Soc.1996, 118, 6317.

Schleyer, P.v.R.; Jiao, H.; Pure. Appl. Chem.
1996, 68, 209.

Kruszewski, J .; Krygowski, T. M. ; Tetrahedron
Letters,1972, 36, 3839.

Stepien, B.T. ; Krygowski, T.M. ; Cyranski,
M.K. ; Mlochowski, J.; Orioli, P. ; Abbate, F.
ARKIVOC, 2004, 3,185.

Katritzky, A. R. ; Barczynski, P.; Musumarra,
G. ; Pisano, D. ; Szafran, M. J. Am. Chem.
Soc. 1989, 111, 7.

Feixas, F. ; Matito, E. ; Poater, J. ; Sola, M.
Journal of Computational Chemistry.2008,
29, 543.

Katritzky, A. R.; Karelson, M.; Sild, S;
Krygowski, T.M.; Jug.K. J. Org. Chem.1998,
63, 5228.

Fias, S.;Van Damme, S.; Bultinck,P.; Journal
of Computational Chemistry. 2008, 29, 358.
Hehre, W.J. R.; Ditchfield, Radom, L.; Pople,
J.A. J.Am. Chem. Soc.1970, 92, 4796.
Cooper, D. L.; Gerratt, J.; Raimondi, M.
Nature, 1986, 323, 699.

Julg, A.Francois, Ph.; Theor. Chim. Acta.1967,
7, 249.

Monajjemi, M.; Struct. Chem.2012, 23, 551.
Monajiemi, M.; Lee, V. S.; Khaleghian, M,;
Honarparvar, B.; Mollaamin. F.; J. Phys.
Chem. C.2010 114, 15315.

Monajjemi, M.; Khaleghian, M.; J. Cluster
Sci.2011, 22, 673.

Monajjemi, M.; Boggs, J.E, J. Phys. Chem.
A,20133.

Frueh, D.; Nucl.P;; Reson.M, Spectrosc.2002,
41, 305.

Jiao, H.; . Schleyer, P.v.R, J. Am. Chem. Soc.
1995, 117, 11529.

Martin, N. H.; Nance, K.H.; Journal of
Molecular Graphics and Modelling. 2002, 21,
51.

Luginbhl, P.;Wuthrich , K.; Progress in Nuclear
Magnetic Resonance Spectroscopy.2002, 40,
199.

Magn. R. L.; Reson. Rev.1987, 12, 91.
Monajjemi,M.; Mohammadian, T.N.; J. Compuit.
Theor. Nanosci. 2015, 12, 4895-4914.
Greenwood, Norman N.; Earnshaw,
Alan Chemistry of the Elements (2nd
ed.). Butterworth-Heinemann. (1997).
ISBN 0080379419.

26.

27.

28.

20.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Laurent, S.; Forge, D.; Port, M.; Roch, A;
Robic, C.; Vander Elst, L.; Muller, R.N. Chem.
Rev. 2008, 108, 2064—2110.

Kodama, R.H. Magnetic nanoparticles. J.
Magn. Magn. Mater. 1999, 200, 359-372.
Chang, L.L.; Erathodiyil, N.; Ying, J.Y. Acc.
Chem. Res. 2012, 46, 1825—1837.
Fujishima, A.; Zhang, X.; Tryk, D.A. Surf. Sci.
Rep. 2008, 63, 515-582.

Wang, X.; Starz-Gaiano, M.; Bridges, T.;
Montell, D. Protoc, Exch,2008, 28.
Mahdavian, L.; Monajjemi, M. Microelectronics
Journal. 2010, 41(2-3), 142-149

Ali R. llkhani .; Majid Monajjemi, Computational
and Theoretical Chemistry.2015, 1074
19-25

Monajjemi,M *.; Bagheri,S.; Moosavi,M.S. ;
Moradiyeh,N.; Zakeri,M.; Attarikhasraghi,N.;
Saghayimarouf,N.; Niyatzadeh,G.;
Shekarkhand,M.; Mohammad S. Khalilimofrad,
Ahmadin,H.; Ahadi,M.; Molecules 2015, 20,
21636-21657;

Monajjemi, M., Chahkandi, B. Journal of
Molecular Structure: THEOCHEM, 2005, 714
(1), 28, 43-60.

Monajjemi, M.; Rajaeian, E.; Mollaamin, F;
Naderi, F; Saki, S. Physics and Chemistry of
Liquids. 2008, 46 (3), 299-306

Monajjemi, M.; Razavian, M.H.; Mollaamin,F;
Naderi,F.; Honarparvar,B.; Russian Journal of
Physical Chemistry A, 2008 , 82 (13), 2277-
2285

Monajjemi, M. Chemical Physics. 2013, 425,
29-45

Monajjemi, M.; Ketabi, S.; Amiri, A. Russian
Journal of Physical Chemistry, 2006, 80 (1),
S55-S62

Monajjemi, M.; Wayne Jr, Robert. Boggs, J.E.
Chemical Physics. 2014, 433, 1-11
Monajjemi, M.; Honarparvar, B.; Nasseri,
S. M. .; Khaleghian M. Journal of Structural
Chemistry. 2009, 50, 1, 67-77

Ardalan, T.; Ardalan, P.; Monajjemi, M.
Fullerenes, Nanotubes, and Carbon
Nanostructures, 2014, 22: 687—708
Monajjemi, M.; Karachi, N.; Mollaamin,
F. Fullerenes, Nanotubes, and Carbon
Nanostructures, 2014, 22: 643-662
Yahyaei, H.; Monajjemi, M. Fullerenes,
Nanotubes, and Carbon Nanostructures.2014,



44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

SOOFI et al., Orient. J. Chem., Vol. 32(5), 2327-2345 (2016)

22(4), 346361

Monajjemi, M. Falahati, M.; Mollaamin, F;
lonics, 2013, 19, 155-164

Monajjemi, M.; Mollaamin, F. Journal of
Cluster Science, 2012, 23(2), 259-272
Tahan, A.; Monajjemi, M. Acta Biotheor, 2011,
59,291-312

Lee, V.S.; Nimmanpipug, P.; Mollaamin,
F.; Kungwan, N.; Thanasanvorakun, S..;
Monajjemi, M. Russian Journal of Physical
Chemistry A, 2009, 83, 13, 2288-2296
Monajjemi, M.; Heshmat, M.; Haeri, HH,
Biochemistry (Moscow), 2006, 71 (1), S113-
S122

Monajjemi, M.; Jafari Azan, M.; Mollaamin,
F. Fullerenes, Nanotubes, and Carbon
Nanostructures.2013, 21(6), 503-515
Mollaamin, F.; Monajjemi, M. Physics and
Chemistry of Liquids .2012, 50, 5, 2012,
596-604

Monajjemi, M.; Khosravi, M.; Honarparvar,
B.; Mollaamin, F.; International Journal of
Quantum Chemistry, 2011, 111, 2771-
2777

Monajjemi, M.; Baheri, H.; Mollaamin, F.
Journal of Structural Chemistry.2011 52(1),
54-59

Mahdavian, L.; Monajjemi, M.; Mangkorntong,
N. Fullerenes, Nanotubes and Carbon
Nanostructures, 2009, 17 (5), 484-495

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

2345

Monajjemi, M.; Farahani, N.; Mollaamin, F.
Physics and Chemistry of Liquids, 2012, 50(2)
161-172

Monaijjemi, M. Theor Chem Acc, 2015, 134:77
DOI 10.1007/s00214-015-1668-9
Monajjemi, M. Journal of Molecular Modeling
, 2014, 20, 2507

Monajjemi , M.; Honarparvar, B.; Monajemi,
H.;. Journal of the Mexican Chemical Society,
2006, 50 (4), 143-148

Monajjemi, M.; Khaleghian, M.; Mollaamin, F.
Molecular Simulation. 2010, 36, 11, 865—
Monajjemi, M. Biophysical Chemistry. 2015
207,114 —127

Sarasia, E.M.; Afsharnezhad, S.;Honarparvar,
B.; Mollaamin, F.; Monajjemi, M. Physics and
Chemistry of Liquids. 2011, 49 (5), 561-571
Amiri, A.; Babaeie, F.; Monajjemi, M. Physics
and Chemistry of Liquids. 2008, 46, 4, 379-
389

Jalilian,H.; Monajjemi, M. Japanese Journal
of Applied Physics. 2015, 54, 8, 08510
Naghsh,F, orient. j chem, 2015, 31(1) 465-
478

Chitsazan, A, orient. jchem, 2015, 31(1) 393-
408

Barmaki, Z, orient. j chem, 2015, 31(3) 1723-
1733

Bonsakhteh, B.; Rustaiyan, A.H, orient. j
chem, 2014, 30(4) 1703-1718 .



