ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2016, Vol. 32, No. (3): Pg. 1583-1587 ## NH₂OH.HCl/BaCl₂: A Convenient System for Synthesis of Oximes from the Corresponding of Organic Carbonyl Compounds #### FARHAD TALAEI and DAVOOD SETAMDIDEH* Department of Chemistry, Mahabad Branch, Islamic Azad University, Mahabad, Iran. *Corresponding author E-mail: davood.setamdideh@gmail.com http://dx.doi.org/10.13005/ojc/320334 (Received: October 08, 2015; Accepted: November 17, 2015) #### **ABSTRACT** A variety of aldehydes and ketones were converted to their corresponding oximes $NH_2OH \cdot HCI/BaCl_2$ system in reflux conditions. Keywords: Oximes, aldoximes, acetophenone oximes, H2NOH.HCl, BaCl2. #### INTRODUCTION # Oximes have many applications in organic synthesis¹. These compounds have antimicrobial, antioxidant, antitumor, anti-depressive, antiviral agents, and anticonvulsant properties²-7. Some oximation methods have been reported⁸. However our ongoing attentions to the development of new modified methods in organic synthesis⁸⁻¹⁵, we have investigated the oximation of a variety of carbonyl compounds with NH₂OH·HCI in the presence of BaCl₂. #### **RESULTS AND DISCUSSIONS** For finding optimization reaction conditions bezaldehyde and acetophenone have been used as model compounds. Experiments showed that using NH $_2$ OH.HCl (1.2 mmol) and BaCl $_2$ (1 mmol) in C $_2$ H $_5$ OH (3 ml) was the best conditions for the oximation of benzaldehyde. The reaction was completed within 30 minutes in reflux conditions with the excellent yield (95%) of the product as shown in scheme 1. Scheme 1: Table 1: Oximation of Aldehydes (1 mmol) by NH2OH.HCI (1.2 mmol)/BaCl2 (1 mmol) Under Reflux Conditions in Ethanol (3 mL) | | | | | | . 4 | | |---------|------------------------------|--|---|------------------------|---|---| | Entry | Substrate | Product | ¹H chemical
shift of C(H)
=N(δ ppm) | Time(min)
Yield(%)³ | ¹HNMR(8 ppm), IR | ¹HNMR(δ ppm), IR (cm⁻¹) and m.p. (°C) ⁷ | | - | benzaldehyde | (Z)-benzaldehyde
oxime | 8.18 | 30, 95 | ¹HNMR (CDCl₃)
IR (liquid film) | 7.41–7.59 (m, 5H, Ar), 8.01 (bs, 1H, OH), 8.18 (s, 1H, CH). 3308 (NOH), 1694, 1497, 1450, 1294, | | Ø | 4-
bromobenzaldehyde | (Z)-4- benzaldehyde
oxime | 8.10 | 35, 95 | m.p.
¹HNMR (CDCl₃)
IR (KBr) | 10/3, 936, 736, 691.
-
5.12 (bs, 1H, OH), 7.27-7.55 (m, 4H, Ar),
8.10 (1H, CH).
3367 (NOH), 1701, 1589, 1489,
1365, 1067, 968, 703. | | e
e | N,N-
dimethylbenzaldehyde | (Z)- N,
N-dimethyl
benzaldehyde
oxime | 8.07 | 40, 96 | m.p.
¹HNMR (CDCl₃)
IR (KBr)
m.p. | 110-112
3.01 (s, 6H, CH ₃), 5.31 (s, 1H, OH), 6.69
(d, 2H, Ar), 7.46 (d, 2H, Ar), 8.07 (s, 1H, CH).
3237 (NOH), 1611, 1447, 1100, 811, 736.
143-145 | | 44 | 4-methylbenzaldehyde | (Z)-4-methyl
benzaldehyde
oxime | 8.15 | 40, 93 | ¹HNMR (CDCI₃)
IR (KBr) | 2.38 (s, 3H,CH ₃), 7.21 (d + bs, 3H, Ar + OH), 7.49 (d, 2H, Ar), 8.15 (s, 1H, CH). 3400 (NOH), 1635, 1409, 1265, 1040, 896, 740. | | 2^{p} | 3-
methylbenzaldehyde | (Z)-3-methyl
benzaldehyde
oxime | 8.15 | 40, 92 | m.p.
¹HNMR (CDCl₃)
IR (liquid film) | 80-81
2.38 (s, 3H,CH3), 7.21-7.41 (m, 4H, Ar),
7.82 (bs, 1H, OH), 8.15 (s, 1H, CH).
3314 (NOH), 1632, 1584, 1489, 1410,
1309, 1266, 954, 786 | | 9 | 4-nitrobenzaldehyde | (Z)-4-
nitrobenzaldehyde
oxime | 8.27 | 30, 93 | m.p.
¹HNMR (CDCl₃)
IR (KBr) | - 7.76(d, 2H, Ar), 8.23 (d + bs, 3H, Ar + OH), 8.27 (s, 1H, CH). 3077 (NOH), 1603, 1535, 1348, 1108, 970, 847, 748, 686. | | e. | 2-
methoxvlbenzaldehyde | (Z)-2-methoxy
benzaldehvde | 8.49 | 40, 97 | m.p.
¹HNMR (CDCI₃) | 129-130
3.89 (s, 3H,OCH ₃), 5.97, (bs, 1H, OH), 6.97
(a, 2H, Ar), 7.38 (t. 1H, Ar), 7.68 (d. 1H, Ar). | |----|----------------------------|-------------------------------|------|--------|--|---| | | | oxime | | | IR (KBr) | 8.49 (s, 1H, CH).
3304 (NOH), 1632, 1497, 1449, 1299, | | | | | | | m.p. | 1211, 957, 870, 756, 692.
75-77 | | ٩ | 4-methoxybenzaldehyde | (<i>Z</i>)-4-
methoxy | 8.11 | 35, 98 | ¹ HNMR (CDCl ₃) | 3.84 (s, 3H,OCH ₃), 6.92 (d, 2H, Ar), 7.53 (d + bs, 3H, Ar + OH), 8.11 (s, 1H, CH). | | | | benzaldehyde | | | IR (KBr) | 3312 (NOH), 1606, 1514, 1254, 1175, | | | | oxime | | | | 956,832, 835. | | | | | | | m.p. | 43-44 | 47 Vields refer to isolated pure products $(\pm 2\%)$. A variety of aldehydes were ground with NH₂OH·HCl/BaCl₂ system under optimized reaction conditions. In this approach, the corresponding *Z*-aldoximes were obtained in quantitative yield (93-98%). The results have been reported in table 1. Then, the oximation of ketones was also performed well by NH₂OH·HCl/BaCl₂ system. Experiments showed the oximation of ketones requires higher molar amounts of NH2OH·HCl (1.5 mmol) and BaCl₂ (1 mmol) vs. 1 mmol of the substrates. The reaction of acetophenone was completed in 65 minutes with the excellent yield (93%) as shown in scheme 2. A variety of acetophenones were ground with $\mathrm{NH_2OH \cdot HCl/BaCl_2}$ system under optimized reaction conditions. In this approach, the corresponding *E*-acetophenonoximes were obtained in quantitative yield (87-95%). The results have been reported in table 2. All substrates and reagents were purchased from commercially sources with the best quality. IR and $^1\mathrm{H}$ NMR spectra were recorded on PerkinElmer FT-IR RXI and 300 MHz Bruker spectrometers, respectively. The products were characterized by their $^1\mathrm{H}$ NMR or IR spectra and comparison with authentic samples (melting points). All yields referred to isolated pure products. The purity of products was determined by TLC and $^1\mathrm{H}$ NMR. Also, reactions were monitored by TLCs utilizing plates cut from silica gel 60 F_{254} aluminum sheets. ### A typical procedure for the oximation with $NH_2OH \cdot HCI/BaCl_2$ system In a round-bottomed flask (10 mL) equipped with a condenser, a mixture of benzaldehyde (0.106 g, 1 mmol), NH $_2$ OH·HCl (0.084 g, 1.2 mmol) and BaCl $_2$ (0.2 g, 1 mmol) in ethanol (3 mL) was prepared. The mixture was stirred under reflux conditions for 30 min. The progress of the reaction was monitored by TLC. After completion of the reaction, H $_2$ O (10 mL) was added and the reaction mixture was continued to stirring for 5 min. The product has been extracted with CH $_2$ Cl $_2$ (3õ15 mL). The mixture was dried over anhydrous Na $_2$ SO $_4$. Evaporation of the solvent and a short column chromatography of the resulting crude material over silica gel (eluent; CCl $_4$ /Et $_2$ O: 5/2) afforded the pure benzaldoxime (0.115 g, 95 % yield, table 1, entry 1). Table 2: Oximation of Ketones (1 mmol) by NH₂OH.HCl (1.5 mmol)/BaCl₂ (1 mmol) Under Reflux Conditions in Ethanol (3 mL) | Entry | Entry Substrate | Product | 'H chemical
shift of CH ₃
(δ ppm) | Time(Sec)
Yield (%)ª | 'HNMR (δ ppm), | ¹HNMR (δ ppm), IR (cm⁻¹) and m.p.(°C) ⁷ | |-------|---------------------------|---|--|-------------------------|--|---| | - | acetophenone | (<i>E</i>)-
acetophenone
oxime | 2.34 | 65, 93 | 'HNMR (CDCI ₃)
IR (KBr) | | | α | 4-
methylacetophenone | (E)-4-
methylacetophenone | 2.38 | 70, 87 | m.p.
¹HNMR (CDCI ₃)
IR (KBr) | 54-55
2.31 (s, 3H, CH ₃), 2.38 (s, 3H, CH ₃), 6.35
(s, 1H, OH), 7.21 (d, 2H, Ar), 7.54 (d, 2H, Ar).
3397 (NH), 1636, 1420, 1265, 1095, 817, 739. | | ო | 4-
methoxyacetophenone | (E)-4-
ethoxyacetophenone
oxime | 2.30 | 100, 90 | 'HNMR (CDCl ₃)
IR (KBr) | 2.3 (s, 3H, CH ₃), 3.83 (s, 3H, OCH ₃), 6.91
(d + bs, 3H, Ar + OH), 7.58 (d, 2H, Ar).
3305 (NOH), 1602, 1446, 1216, 1096, 925, 757.
79-80 | | 4 | benzalacetone | (<i>E</i>)-
benzalacetone
oxime | 2.18 | 70, 95 | 'HNMR (CDCl ₃)
IR (KBr)
m.p. | 7.28(Ar, 2H), 6.87(Ar, 2H), 4.81 (CH, 1H),
3.78(OCH ₃ , 3H), 2.53 (OH, 1H), 1.45 (CH ₃ , 3H).
3271 (NOH), 1633, 1448, 1260, 1029, 964, 802,
1034, 749, 691.
111-113 | aYields refer to isolated pure products (±2%). #### Scheme 2: #### CONCLUSION The oximation of a variety of aldehydes and ketones was carried out efficiently with NH₂OH·HCl/BaCl₂ system. The reactions were performed in ethanol under reflux conditions. Excellent yields (93-98%) of products in appropriate times (30-100 min) have been achievement. #### **ACKNOWLEDGEMENTS** The authors gratefully appreciated the financial support of this work by Islamic Azad University branch of Mahabad. #### REFERENCES - 1. Xia, J. J.; Wang, G. W. *Molecules* **2007**, *12*, 231-236. - Li, H. Q.; Xiao, Z. P.; Yin, L.; Yan, T.; Lv, P.C.; Zhu, H. L. . Eur. J. Med. Chem. 2009, 44, 2246-2251. - Karakurt, A.; Sevim, D.; Özalp, M.; Özbey, S.; Kendi, E.; Stables, J. P. Eur. J. Med. Chem. 2001, 36, 421-433. - Puntel, G. O.; de Carvalho, N. R.; Gubert, P.; Palma, A. S.; Corte, C. L. D.; Ávila, D. S.; Pereira, M. E.; Carratu, V. S.; Bresolin, L.; J. Da Rocha, B. T.; Soares, F. A. A. Chem. Biol. Interact. 2009, 177, 153-160. - Wang, T. C.; Chen, I. L.; Lu, C. M.; Kuo, D. H.; Liao, C. H *Chem. Biodivers.* 2005, 2, 253-263. - De Sousa, D. P.; Schefer, R. R.; Brocksom U.; Brocksom, T. J. *Molecules* 2006, 11, 148-155. - 7. Ouyang, G.; Chen, Z.; Cai, X. J.; Song, B. A.; Bhadury, P. S.; Yang, S.; Jin, L. H.; Xue, W.; - Hu, D.Y.; Zeng, S. *Bioorg. Med. Chem.* **2008**, *16*, 9699-9707. - 8. Setamdideh, D.; Khezri, B.; Esmaeilzadeh, S. J. Chin. Chem. Soc. **2012**, *59*, 1119-1124. - 9. Setamdideh, D.; Khezri, B.; Alipouramjad, A. *J. Chin. Chem. Soc.* **2013**, *60*, 590-596. - Sofighaderi, S.; Setamdideh, D. Orient. J. Chem. 2013, 29, 1135-1137. - 11. Setamdideh, D.; Sepehraddin, F. *J. Mex. Chem. Soc.* **2014**, *58*, 22-26. - 12. Azizi Asl, P.; Setamdideh, D. *J. Chin. Chem. Soc.* **2014**, *59*, 940-944. f) Setamdideh, D. *J. Mex. Chem. Soc.* **2014**, *58*, 230-234. - 13. Azimzadeh, M.; Setamdideh, D. *Orient. J. Chem.*, **2015**, *31*, 1085-1089. - 14. Rezaeekhoredehforosh, R.; Khezri, B.; Setamdideh, D. *Orient. J. Chem.*, **2015**, *31*, 1205-1209. - 15. Mahmoudi, M.; Setamdideh, D. *Orient. J. Chem.*, **2015**, *31*, 1215-1218.