ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039
     FacebookTwitterLinkedinMendeley

Reactions of MoCl5 with Succinimide, Imidazole, 3-Methylpyridine and 4-Methylpyridine in THF

Rakesh Kumar1 and Gursharan Singh2*

1Punjab Technical University, Kapurthala India.

2Department of Applied Chemistry, GianiZail Singh Campus College of Engineering and Technology, Dabwali Road, MRSPTU Bathinda-151001-India.

Corresponding Author E-mail: gursharans82@gmail.com

DOI : http://dx.doi.org/10.13005/ojc/370316

Article Publishing History
Article Received on : 01-Apr-2021
Article Accepted on :
Article Published : 24 May 2021
Article Metrics
ABSTRACT:

MoCl5 was reacted with succinimide/imidazole/3-methylpyridine/4-methylpyridine in THF medium using equal/double molar concentrations of the ligand at room temperature. The end products obtained are: MoO2Cl4(C4H5NO2)4(C4H8O), [1]; Mo2O12Cl7(C3H4N2)7, [2]; Mo2O12Cl7(C3H4N2)7, [3]and Mo3Cl8(C6H7N)4(C4H8O)2, [4].
The above compounds were characterized by FTIR, 1H NMR, 13C NMR, LC-MS, microbiological and C, H, N, Mo, Cl studies. All procedures and work outs were handled in vacuum line using dry nitrogen atmosphere to protect the products from oxidation/hydrolysis by air/moisture.Elemental data and fragments visualized in LC-MS are concordant with the formulae derived.

KEYWORDS:

Download this article as: 

Copy the following to cite this article:

Kumar R, Singh G. Reactions of MoCl5 with Succinimide, Imidazole, 3-Methylpyridine and 4-Methylpyridine in THF. Orient J Chem 2021;37(3).


Copy the following to cite this URL:

Kumar R, Singh G. Reactions of MoCl5 with Succinimide, Imidazole, 3-Methylpyridine and 4-Methylpyridine in THF. Orient J Chem 2021;37(3). Available from: https://bit.ly/3oHDQn2


Introduction

Succinimide

Succinimides1 are used as precursors for biological applications. Succinimide is a part of various biologically active molecules having properties: antitumour2, CNS depressant3, anorectic4, hypotensive5, analgesic6, cytostatic7, nerve conduction blocking8, antispasmodic9, bacteriostatic10, muscle relaxant11, antibacterial12, antifungal13, anti-convulsant14 and anti-tubercular15.

Imidazole

Imidazole containing drugs are used16-28 as:anticoagulants, 20-carboxypeptidaseinhibitors,antifungal, β-lactamase inhibitors,hemeoxygenase inhibitors, anticancer, antitubercular, anti-inflammatory,antibacterial, antiviral, antidiabetic HETE (20-Hydroxy-5,8,11,14-eicosatetraenoic acid) synthase inhibitors, antimalarial and antiaging agents.

3-Methylpyridine

3-Methylpyridine29 is used to prepare agrochemical chlorpyrifos30. As compared to 2-methylpyridine/4-methylpyridine31, 32 there is low degradation andpoor volatility of 3-methylpyridine from water samples.3-Methylpyridine is used as an antidote for organophosphate poisoning 33. It is biodegradable.

4-Methylpyridine

Many heterocyclic compounds can be prepared from 4-methylpyridine34. It is a precursor to other commercially significant species, often of medicinal interest. 4-Methylpyridine is a precursor for the preparation of the antituberculosis drug35 ‘isoniazid’. It is very reliable and commonly used medicine for tuberculosis.

It has been noted that many drugs havegreater activity as metal chelates as compared to organic compounds36-41.

Aim of Investigation

Molybdenum(V) chloride has been reported to react with a variety of N-heterocyclic bases.Many reactions of aromatic azoles, diaminoalkanes, imides, 4-phenylimidazole-2-thiol, alkylpyridines, 2-thiazoline-2-thiol, mercaptopyridine-N-oxide sodiumand thiols with MoCl5 have been studied42-47 by the author.

In view of the fact that complexes of these bases with transition metalsshow various applications. Complexes of succinimide, imidazole, 3-methylpyridine and 4-methylpyridine with MoCl5 have been synthesized and studied.Characterization of these complexes was executed with 1H NMR, 13 C NMR, FTIR, LC-MS, microbiological studies and elemental analysis.

Materials and Methods

Succinimide, imidazole, 3-methylpyridine, 4-methylpyridine and MoCl5were bought fromSigma-Aldrich.

The products are easily oxidized/hydrolysed by air/moisture, so all procedures and work outs were handled in vacuum line using dry nitrogen atmosphere to protect the products from oxidation/hydrolysis by air/moisture.

Ligand dissolvedin dry THF was combined from dropping funnel withMoCl5dropwise with continuous agitation. The reaction was carried outfor 7-8 h.Filtration unit fitted with G-4 sintered glass crucible was used for filtration and isolation of products.

Molybdenum analysis was performed by oxinate method gravimetrically48. Chlorine analysis was performed by silver chloride method gravimetrically48.Thermo Finnigan Elemental Analyser was used for analysis of remaining elements. Perkin-Elmer 400 FTIR Spectrometer was used for obtaining vibrational spectra.1H/13C nuclear magnetic resonancespectrain DMSO-d6 were obtainedwithMultinuclear BruckerAvance-II 400 NMR spectrometer. LC-MS spectra were obtainedin the range 0 – 1100 m/z. Above instruments were used atP. U. Chandigarh.

Antibacterial and antifungal activities of molybdenum compounds synthesized were tested using strains: gram positive bacteria Staphylococcus aureus (MTCC-737), gram negative bacteria E. coli (MTCC-1687), fungi Candida albicans (MTCC-227) and Aspergillusniger (MTCC-282). Agar well diffusion assay method was used.Standard drug (amoxicillin) for bacteria and standard drug (ketoconazole) for virus as reference were used.MTCC (The Microbial Type Culture Collection and Gene Bank, Chandigarh, India) cultures were used. Testing was carried out at ISF Analytical Laboratory (ISF College of Pharmacy), Ferozepur Road, Moga, Punjab, India.

Reactions

(R)/(F) represent the product source,

Results and Discussions

Elemental Analysis

Table 1: reveals the percentage of the observed (theoretical) values of the elements.

 (Elemental Analysis)

Compounds

Cl

Mo

H

C

N

MoO2Cl4(C4H5NO2)4(C4H8O), [1]

(Black/738.0)

18.77

(19.24)

12.10

(13.00)

02.57

(03.25)

32.37

(32.52)

06.85

(07.58)

Mo2O12Cl7(C3H4N2)7, [2]

(Yellowish green/1108.5)

21.78

(22.41)

16.93

(17.32)

02.81

(02.52)

22.28

(22.73)

17.01

(17.68)

Mo3Cl8(C6H7N)4(C4H8O)2, [3]

(Brown/1088.0)

25.57

(26.10)

25.53

(26.47)

03.88

(04.04)

36.07

(35.29)

04.68

(05.14)

Mo3Cl8(C6H7N)4(C4H8O)2, [4]

(Dark green/1088.0)

25.33

(26.10)

25.97

(26.47)

03.49

(04.04)

34.67

(35.29)

04.53

(05.14)

FTIR Spectra

Succinimide49, 50 has N-H stretching at 3411 cm-1 & 3222 cm-1. Band at 3434 cm-1 suggests presence of N-H group in [1]. Stretching at 938 cm-1 and 918 cm-1 reveal the existence of cis-MoO22+ core51, 52 in [1]. C=O frequency has not altered much from 1773 cm-1 and 1711 cm-1, indicating there by absence of Mo–O coordination in [1]. There seems to be little decrease in C=O bond order (Table-2).

Table 2:  FTIR absorptions in cm−1

Table 2: (FTIR absorptions in cm−1)

Assignments

Succinimide49, 50

 [1]

N-H str.

3411 s, b, 3222 s, b

3434.0 s, b

CH2 sym. str.

2962, 2946 w

 

C=O sym., H-N-C in plane bending

1773 m

1773.5 sh

C=O asym., H-N-C in plane bending

1711 vs, b

1706.1 s

CH2 sym. scissoring

1432 m

1425.9 sh

CH2asym. scissoring

1402 m

 

C-N-C asym. str., H-N-C in plane bending

1348 s, 1335

1371.8 m

CH2 bending, ring in plane bending

1296 s

1298.1 m

CH2 bending

1242

1247.3 sh

C-N-C asym. str., H-N-C in plane bending

1188 s,

1190.3 s

C-C str., CNC sym. str.

850

853.5 sh

CH2 bending, ring out of plane bending

818 s

818.0 w

OCN asym. out of plane bending

631 m

643.3 m

OCN sym. out of plane bending, CH2 bending

541 w

556.3 sh

Mo-N str.

 

416.7 w

Mo=O Str. of cis-MoO22+ core51, 52

 

938.2 w, 918.1 sh

 

It is reported that N-H stretching of imidazole53, 54 appears at 3722 cm-1-3272 cm-1. There is presence of broad band at 3431 cm-1-3000 cm-1 pertaining to N-H group in [2]. This broadening occurs in the solid state (KBr disk) because of hydrogen bonding. A strong band at 975 cm-1 is suggestive of terminal Mo=O51, 55, 56 in [2] (Table-3).

Table 3: FTIR absorptions in cm−1

Table 3:  (FTIR absorptions in cm−1)

Assignments

Imidazole53, 54

[2]

N-H  str.

3722 vb, 3657 vb, 3272, 3242, 3238

3431.1vs, 3000 s, vvb

C-H str.

3195, 3166

3157.8sh, 2997.0sh

C=C ring str.

1560, 1502

1633.2 s, 1592.5sh

N-C  ring str.

1435

1445.4 w

C-H in plane bending

1094, 1073

1194.1 w, 1079.9 w

C-H out of plane bending (wagging),

Ring twisting

817, 728

760.7 m

Ring twisting

648

627.3 m

Ring twisting, N-H wagging

527

 

Terminal Mo=O51, 55, 56str.

 

975.2 m

 

C-H ring stretching of 3-methylpyridine57-60 appears at 3062 cm-1 and 3031 cm-1. Band at 3055 cm-1 has been located in [3]. There is increase of ring C=N str.&ring C=N torsion values and decrease of ring C-H bending mode values, which show presence of some Mo(dπ)→N(pπ) back bonding. A strong band at 977 cm-1 is suggestive of terminal Mo=O45, 49, 50 in [3] (Table-4).

Table 4: FTIR absorptions in cm−1

Table 4: (FTIR absorptions in cm−1)

Assignments

3-Methylpyridine57-60

 [3]

C-H Ringstr.

3062, 3031

3397.2 s, 3055.8sh

C-H Methylstr.

3000, 2959, 2926

2867.8 sh

Ringstr.

1598, 1579

1630.5 m, 1552.7 m

Ring C-H bending

1480

 

C-H Methyl assym bending

1457, 1450

1469.5 m

Ring C-Hbending

1416

 

C-H methylsym. bending

1386

1384.8 w

Ring C-Hbending

1363

1304.38 sh

Ring str.

1249

1263.4 w

C-C bond between ring and methylstr.

1229

 

Ring C-H bending

1192

1185.3sh

C-H methyl rocking

1126, 1045

1116.25 m

Ring out of plane bending

1031

1044.32 w, 1027.32 w

RingC=N str.

791

890.5 vs, 785.3 m, 737.4

RingC=N torsion

712

723.6 m

Ring bending

636, 538

676.7 m, 511.9 w

∂ C-C bond between ring and methyl

456

464.2 w

Terminal Mo=O45, 49, 50str.

 

977.0 w

 

C-H ring stretching of 4-methylpyridine 53-60 appears at 3074 cm-1 and 3032 cm-1. Band at 3097 cm-1 has been located in [4]. There is increase of ring C=N str.&ring C=N torsion values and decrease of ring C-H bending mode values, which show presence of some Mo(dπ)→N(pπ) back bonding. A strong band at 976 cm-1 is suggestive of terminal Mo=O 45, 49, 50 in [4] (Table-5).

Table 5:  (FTIR absorptions in cm−1)

Table 5:  (FTIR absorptions in cm−1)

Assignment

4-Methylpyridine57-60

[4]

C-H Ringstr.

3074, 3032

3400.9 vs, b, 3097.5 sh

C-H Methylstr.

2992, 2926

2948.8 sh

Ringstr.

1610, 1563

1640.3 s, 1508.0m

Ring C-H bending

1501

 

C-H Methyl assym bending

1458, 1445

1444.7 sh

Ring C-H bending

1418

 

C-H methyl sym. bending

1383

1379.6 w

Ring C-H bending

1365

1316.0 w

Ring str.

1227

1256.0 w

C-C bond between ring and methyl str.

1210

1204.0 w

Ring C-H bending

1194

 

C-H Methyl rocking

1114, 1072

1113.4 w, 1039.6 w

Ringout of plane bending

995, 875

 

Ring C=N str.

730

793.8 m, 738.0 m

Ring C=N torsion

524

569.1 sh

∂ C-C bond between ring and methyl

486

476.5 w

Terminal Mo=O45, 49, 50str.

 

976.1s

 

1H NMR Spectra

CH2 peaks of succinimide61, 62 absorb at 2.74 ppm. 1H NMR of [1] in DMSO-d6 shows CH2 peaks at 2.63 ppm showing upfield shift (Table-6). ↑ and ↓ represent upfield/downfield shift.

Table 6: (1H NMR absorptions in ppm)

Table 6: (1H NMR absorptions in ppm)

Assignments

Succinimide61, 62

in CDCl3

[1]

N-H

8.9

11.12 ↓

CH2

2.75

2.63↑

Residual63 DMSO-d6

 

2.57

THF63 C-2, 5

 

3.51

THF63 C-3, 4

 

 

 

Imidazole 64, 65 spectrumin shows C-H proton (in middle ofnitrogen atoms) absorption at 7.72 ppm.Remaining C-H protons absorb at 7.14 ppm. N-H absorption occurs at 11.60 ppm. Spectrum of [2] in DMSO-d6 shows relatively downfield absorptions for all the protons due to coordination of ligand lone pairs with Mo cations (Table-7). Two equivalent C–H protons of imidazole appear as singlets, because of the tautomerization equilibrium.

Table 7: (1H NMR absorptions in ppm)

Table 7: (1H NMR absorptions in ppm)

Assignments

Imidazole64, 65

in CDCl3

 [2]

N-H

11.60 1H

14.94 (b) 2H ↓

C-H (in middle of nitrogen atoms)

7.72 1H

9.21 (s) 1H ↓

C-H (remaining)

7.14 2H

7.74 (s) 2H ↓

Residual63 DMSO-d6

 

2.58 (s)

THF63 C-2, 5

 

3.63 (s) 4H

THF63 C-3, 4

 

 

 

On comparison of 1H NMR of 3-methylpyridine 58, 59, 66 with that of [3], it is observed that these absorptions have moved downfield due to decrease in π-electron density of the ring on lone pair sharing bynitrogen with molybdenum cation (Table-8).

Table 8: (1H NMR absorptions in ppm)

Table 8: (1H NMR absorptions in ppm)

Absorptions

3-Methylpyridine58, 59, 66

 in CDCl3

[3]

H (CH3)

2.32 3H Singlet

2.57 ↓

H-C1

8.44 1H Singlet

8.891H ↓

H-C3

7.45 1H Doublet

8.47 1H ↓

H-C4

7.16 1H Triplet

8.01 ↓

H-C5

8.42 1H Doublet

8.83↓

Residual63 DMSO-d6

2.58

THF64 C-2, 5

3.65

THF65 C-3, 4

1.56

On comparison of 1H NMR of 4-methylpyridine 58, 59, 66 with that of [4]it is observed that these absorptions have moved downfield due to decrease in π-electron density of the ring on lone pair sharing by nitrogen with molybdenum cation(Table-9).

Table 9: (1H NMR absorptions in ppm)

Table 9: (1H NMR absorptions in ppm)

Assignments

4-Methylpyridine58, 59, 66

in CDCl3

[4]

H (CH3)

2.34 3H s

2.58↓

H-C1& H-C5

8.46 2H d

8.78↓

H-C2 & H-C4

7.10 2H d

7.88↓

Residual63 DMSO-d6

 

2.50

THF63 C-2, 5

 

3.32

THF63 C-3, 4

 

1.49

 

13C NMR Spectra

On comparison of 13C NMR of succinimide67 with that of [1], it is observed that these absorptions have moved slightly upfield (Table-10).

Table 10: (13C NMR absorptions in ppm)

Table 10: (13C NMR absorptions in ppm)

Assignments

Succinimide67

[1]

C attached to oxygen

183.85

179.30 singlet ↑

Other C

30.30

29.41 singlet ↑

Residual68 DMSO-d6

 

39.37 pentet ↑

THF69 C-2, 5

 

 

THF69 C-3, 4

 

 

 

Microbiological Activity

Molybdenum compounds prepared were tested for their antibacterial and antifungal activities with strains: gram-positive bacteria Staphylococcus aureus (MTCC-737), gram-negative bacteria E. coli (MTCC-1687), fungi Candida albicans (MTCC-227) and Aspergil lusniger (MTCC-282).Reference drugs amoxicillin and ketoconazole were used for bacteria and fungi, respectively. Zone of inhibition70 for a strain of bacteria/fungi has been measured to find out extent of resistance of bacteria/fungi to the reference drug.Molybdenum compounds have been observed potentially active against bacteria and fungi (Table-11).Especially,

Compounds 1, 2, 3 and 4 have greater antibacterial potential against E. coli than the reference drug (amoxicillin).

Compounds 3 and 4 have greater antifungal potential against C. albicansthan the reference drug (ketoconazole).

Table 11: (Microbiological Study)

Table 11: (MicrobiologicalStudy)

Compound(100 µg/ml)

Zone of inhibition63(mm)

Gram-

positive

Gram-

negative

Antifungal

S. aureus

E. coli

C. albicans

A. niger

Reference Drug

25.69

18.35

21.37

28.21

[1]

21.38

19.51

18.54

21.29

[2]

18.63

21.41

19.66

22.51

[3]

21.41

21.36

22.57

19.12

[4]

19.36

21.58

22.32

18.74

Solvent control

Conclusion and results

These compounds can kill and inhibit the growth of microbes

 

Mass Spectra (LC-MS)71

Ionic speciesnoted (Tables-12, 13)justify the formulae,

Table 12: (LC-MS Ionization)

Click here to View table

Table 13: (LC-MS Ion m/z values)

Table 13: (LC-MS Ion m/z values)

Comp.

Ion

Calculated71

Detected

Relative  intensity

[1]

[MoO2Cl4(C4H8O)(C4H5NO2)3]2+

319.46

321.11

15

[MoO2Cl4(C4H8O)(C4H5NO2)4]+

737.95

737.54

2%

[MoOCl4(C4H8O)]+

325.83

327.11

42%

[MoOCl2(C4H5NO2)2(C4H8O)]2+

226.97

230.07

36%

[C4H5NO2]+

99.03

100.05

52

[C4H8O]+

72.05

73.07

13

[MoOCl2]2+

91.91

91.04

100

[MoO2Cl4(C4H8O)]2+

170.91

172.11

8%

[2]

[Mo2O12Cl7(C3H4N2)7]2+

554.40

555.38

 

[Mo2O4Cl6(C3H4N2)6]2+

438.91

440.05

7%

[Mo2O4Cl2(C3H4N2)6]2+

368.97

371.99

12%

[Mo2O4Cl2(C3H4N2)4]2+

300.93

303.94

3%

[Mo2O4Cl2(C3H4N2)2]2+

232.90

235.18

2%

[Mo2O4Cl2]2+

164.86

163.10

8%

[MoOCl2]2+

91.91

91.04

10

[C3H4N2]+

68.03

69.04

100

[3]

[Mo3Cl8(C6H7N)4(C4H8O)2]2+

544.90

544.46

3%

[Mo3Cl8)(C6H7N)4]2+

472.84

472.39

4

[MoCl6)(C6H7N)]+

400.77

400.32

5%

[MoCl4)(C6H7N)]+

330.83

328.25

10%

[C6H7N]+

93.05

94.06

100

[C4H8O]+

72.05

73.07

8

[4]

[Mo3Cl8(C6H7N)4(C4H8O)2]2+

544.90

544.47

6%

[Mo3Cl8)(C6H7N)4]2+

472.84

472.39

8%

[MoCl6)(C6H7N)]+

400.77

400.32

18%

[MoCl4)(C6H7N)]+

330.83

328.26

18%

[C6H7N]+

93.05

94.06

100%

[C4H8O]+

72.05

73.07

3%

 

Conclusion

Band at 3434 cm-1 suggests the presence of N-H group in [1]. Stretching at 938 cm-1 and 918 cm-1 reveal the existence of cis-MoO22+ corein [1]. C=O frequency has not altered much from 1773 cm-1 and 1711 cm-1, indicating thereby absence of Mo–O coordination in [1]. There seems to be little decrease in C=O bond order. 1H NMR of [1]shows CH2 peaks at 2.63 ppm showing up field shift.13 C NMR of [1] shows that the absorptions have moved slightly up field. Compound is potentially active against microbes. Detection of ions in LC-MS are in tune with the formula presented.

There is presence of broad band at 3431 cm-1-3000 cm-1 pertaining to N-H group in [2]. This broadening occurs in the solid state (KBr disk) because of hydrogen bonding. A strong band at 975 cm-1 is suggestive of terminal Mo=O in [2]. Imidazole spectrum shows C-H proton (in middle of nitrogen atoms) absorption at 7.72 ppm. Remaining C-H protons absorb at 7.14 ppm. N-H absorption occurs at 11.60 ppm. Spectrum of [2] shows relatively downfield absorptions for all the protons due to coordination of ligand lone pairs with Mo cations. Two equivalent C–H protons of imidazole appear as singlets because of the tautomerization equilibrium. Compound is potentially active against microbes.Detection of ions in LC-MS are in tune with the formula presented.

Band at 3055 cm-1 has been located in [3]. There is increase of ring C=N str. and ring C=N torsion values and decrease of ring C-H bending mode values, which show presence of some Mo(dπ)→N(pπ) back bonding. A strong b and at 977 cm-1 is suggestive of terminal Mo=O in [3]. It is observed that these proton absorptions have moved downfield due to decrease in π-electron density of the ring on lone pair coordination by nitrogen with molybdenum cation.Compound is potentially active against microbes.Detection of ions in LC-MS are in tune with the formula presented.

Band at 3097 cm-1 has been located in [4]. There is increase of ring C=N str. and ring C=N torsion values and decrease of ring C-H bending mode values, which show presence of some Mo(dπ)→N(pπ) back bonding. A strong band at 976 cm-1 is suggestive of terminal Mo=O in [4]. It is observed that these proton absorptions have moved downfield due to decrease in π-electron density of the ring on lone pair coordination by nitrogen with molybdenum cation.Compound is potentially active against microbes.Detection of ions in LC-MS are in tune with the formula presented.

Acknowledgement

P. U. Chandigarh, India is acknowledged for providing characterizing facility.

Conflict of Interest

Authors have no conflict of interest.

References

  1. Shetgiri, N.P.;Nayak,B.K.,Indian J. Chem., 2005, 44B, 1933-1936.
  2. Hall, I. H.; Wong, O. T.; Scovill, J. P.,Biomed Pharmacother,1995, 49(5), 251-258.
    CrossRef
  3. Aeberli, P; Go gerty, J. H; Houlihan, W. J; Iorio, L. C.,J. Med. Chem.,1976, 19(3), 436-438.
    CrossRef
  4. Rich, D. H.; Gardner, J. H.,Tetrahedron Letters, 1983, 24(48), 5305-5308.
    CrossRef
  5. Pennington, F. C.; Guercio, P. A.; Solomons, I. A.,J. Amer. Chem. Soc., 1953, 75(9), 2261.
    CrossRef
  6. Correa, R.; Filho, V. C.; Rosa, P. W.; Pereira, C. I.; Schlemper, V.; Nunes, R. J.,Pharm. Pharmacol. Comm., 1997, 3(2), 67-71.
  7. Crider, A. M; Kolczynski, T. M.; Yates, K. M., J. Med. Chem.,1980, 23(3), 324-326.
    CrossRef
  8. Kaczorowski, G. J.; McManus, O. B.; Priest, B. T.; Garcia, M. L., Gen. Physiology, 2008, 131(5), 399-405.
    CrossRef
  9. Filho, V. C.; Nunes, R. J.; Calixto, J. B.; Yunes, R. A., Pharm. Pharmacol. Comm., 1995,1(8), 399-401.
  10. Johnston, T. P.; Piper, J. R.; Stringfellow, C. R.,J. Med. Chem.,1971, 14(4), 350-354.
    CrossRef
  11. Musso, D. L.; Cochran, F. R.; Kelley, J. L.; McLean, E. W.; Selph, J. L.; Rigdon, G. C., J. Med. Chem., 2003, 46(3), 399-408.
    CrossRef
  12. Zentz, F.; Valla, A.; Guillou, R. L.; Labia, R.; Mathot, A. G.; Sirot, D.,Farmaco, 2002, 57(5), 421-426.
    CrossRef
  13. Hazra, B. G.; Pore, V. S.; Day, S. K.; Datta, S.; Darokar, M. P., Saikia, D.,Bioorg. Med. Chem. Lett., 2004, 14(3), 773-777.
    CrossRef
  14. Kornet, M. J.; Crider, A. M.; Magarian, E. O., J. Med. Chem., 1977, 20(3), 405-409.
    CrossRef
  15. Isaka, M.; Prathumpai, W.; Wongsa, P.; Tanticharoen, M.; Hirsutellone, F.,Org. Lett.,2006, 8(13), 2815-2817.
    CrossRef
  16. Katritzky, A. R.; Rees,Comprehensive Heterocyclic Chemistry, 1984, 5, 469-498.
    CrossRef
  17. Grimmett, M. R., Imidazole and Benzimidazole Synthesis, Academic Press, 1997.
    CrossRef
  18. Brown, E.G., Ring Nitrogen and Key Biomolecules, Kluwer Academic Press, 1998.
  19. Pozharskii, A.F., Soldatenkov, A. T.; Katritzky,A. R.,Heterocycles in Life and Society, John Wiley & Sons, 1997.
  20. Gilchrist, T. L., Heterocyclic Chemistry,the Bath Press,1985, ISBN 0-582-01421-2.
  21. Congiu, C.;Cocco, M. T.;Onnis, V.,Bioorganic & Medicinal Chemistry Letters, 2008, 18, 989–993.
  22. Venkatesan, A.M.;Agarwal, A.;Abe, T.;Ushirogochi, H.O.;Santos, D.;Li, Z.;Francisco, G.;Lin, Y.I.;Peterson, P.J.;Yang, Y.;Weiss, W.J.;Shales, D.M.;Mansour, T.S.,Bioorg. Med. Chem., 2008, 16, 1890-1902.
    CrossRef
  23. Nakamura, T.;Kakinuma, H.;Umemiya, H.;Amada, H.;Miyata, N.;Taniguchi, K.;Bando, K.;Sato, M.,Bioorganic & Medicinal Chemistry Letters, 2004, 14, 333-336.
    CrossRef
  24. Han, M. S.; Kim, D. H., Bioorganic & Medicinal Chemistry Letters, 2001, 11, 1425- 1427.
    CrossRef
  25. Roman, G.;Riley, J.G.;Vlahakis, J. Z.;Kinobe, R.T.;Brien, J.F.;Nakatsu, K.;Szarek,W.A., Bioorg. Med. Chem., 2007, 15, 3225-3234.
    CrossRef
  26. Bbizhayev, M. A., Life Sci., 2006, 78, 2343-2357.
    CrossRef
  27. Nantermet, P.G.;Barrow, J.C.;Lindsley, S.R.;Young, M.;Mao, S.;Carroll, S.;Bailey, C.;Bosserman, M.;Colussi, D.;McMasters, D.R.;Vacca, J.P.;Selnick, H.G.,Bioorg. Med. Chem. Lett.,2004, 14, 2141-2145.
    CrossRef
  28. Adams, J. L.;Boehm, J.C.;Gallagher, T. F.;Kassis, S.;Webb, E. F.;Hall, R.;Sorenson, M.; Garigipati, R.;Griswold, D. E.; Lee,J. C.,Bioorg.Med. Chem.Lett., 2001,11,2867-2870.
    CrossRef
  29. https://en.wikipedia.org/wiki/3-Methylpyridine.
    CrossRef
  30. Shimizu, S.;Watanabe, N.;Kataoka, T.;Shoji, T.;Abe, N.;Morishita, S.;Ichimura. H.,Ullmann’s Encyclopedia of Industrial Chemistry, 2002, doi:10.1002/14356007.a22_399.
    CrossRef
  31. Sims, G. K.;Sommers, L.E.,Environmental Toxicology and Chemistry, 1986, 5, 503-509.
    CrossRef
  32. Sims, G. K.;Sommers, L. E.,J. Environmental Quality,1985, 14, 580-584.
    CrossRef
  33. https://www.alfa.com/en/catalog/A14012/.
  34. https://en.wikipedia.org/wiki/4-Methylpyridine.
  35. https://pubchem.ncbi.nlm.nih.gov/compound/4-Methylpyridine #section= Chemical-Vendors.
  36. Thomas, D. D.; Ridnour, L. A.; Isenberg, J. S.; Flores, S. W.; Switzer, C. H.; Donzelli, S.; Hussain, P.; Vecoli, C.; Paolocci, N.; Ambs, S.; Colton, C. A.; Harris, C. C.; Roberts, D. D.; Wink, D. A., Free Radical Biology and Medicine, 2008, 45(1), 18-31.
    CrossRef
  37. Chen, P. R.; He, C.,Current Opinion in Chemical Biology, 2008, 12(2), 214-21.
    CrossRef
  38. Pennella, M. A.; Giedroc, D. P.,Biometals, 2005, 18(4), 413-28.
    CrossRef
  39. Cowan, J. A.; Bertini, I.; Gray, H. B.; Stiefel, E. I.; Valentine, J. S., Structure and Reactivity: Biological Inorganic Chemistry, 3, University Science Books, Sausalito,2007, 8(2): 175181.
  40. Jameel, A.;MSA, S. A. P., Asian Journal of Chemistry, 2010, 22(12), 3422-48.
  41. Anupama, B.; Sunuta, M.; Leela, D. S.; Ushaiah; Kumari, C. G.,Journal of Fluorescence, 2014, 24(4), 1067-76.
    CrossRef
  42. Singh, G.; Mangla, V.; Goyal, M.; Singla, K.; Rani, D., American International Journal of Research in Science, Technology, Engineering & Mathematics, 2014, 8(2), 131-136.
  43. Singh, G.; Mangla, V.; Goyal, M.; Singla, K.; Rani, D., American International Journal of Research in Science, Technology, Engineering & Mathematics, 2015,10(4),299-308.
  44. Singh, G.; Mangla, V.; Goyal, M.; Singla, K.; Rani, D., American International Journal of Research in Science, Technology, Engineering & Mathematics, 2015,11(2),158-166.
  45. Singh, G.; Mangla, V.; Goyal, M.; Singla, K.; Rani, D.; Kumar, R., American International Journal of Research in Science, Technology, Engineering & Mathematics, 2016, 16(1), 56-64.
  46. Singh, G.; Kumar, R., American International Journal of Research in Science, Technology, Engineering & Mathematics, 2018, 22(1), 01-08.
  47. Rani, D.; Singh, G.; Sharma, S., Oriental Journal of Chemistry, 2020, 36(6), 1096-1102.
    CrossRef
  48. Vogel, A. I., A Text Book of Quantitative Inorganic Analysis; John Wiley and Sons: New York, (Standard methods)1963.
    CrossRef
  49. Stamboliyska,B.A.;Binev, Y. I.; Radomirska, V. B.; Tsenov, J. A.; Juchnovskiet,I. N., Journal of Molecular Structure, 2000, 516, 237-245.
  50. Uno, T.;Machida, K.,Bulletin of the Chemical Society of Japan, 1962, 35(2),276-283.
  51. Heyn, B.; Hoffmann; Regina, Z. Chem.,1976, 16, 407.
    CrossRef
  52. Abramenko, V.L.;Sergienko, V.S.;Churakov, A.V.,Russian J. Coord. Chem., 2000, 26(12), 866-871.
  53. Abod, N. A.; M. AL-Askari; Saed, B. A., Basrah Journal of Science (C),2012, 30(1), 119-131.
  54. Mohan, J., Organic Spectroscopy: Principles and Applications, CRC Press, 2004.
  55. Barraclough, C. G.; Kew, D. J., Australian J. Chem., 1970, 23, 2387-2396.
    CrossRef
  56. Ward, B. G.; Stafford, F. E., Inorg. Chem.,1968, 7, 2569.
    CrossRef
  57. Toco’n, I. L.;Woolley, M.S.;Otero, J.C.;Marcos, J. I.,Journal of Molecular Structure, 1998, 470, 241-246.
    CrossRef
  58. Gupta, S. K.; Srivastava, T. S., J. Inorganic and Nuclear Chem., 1970, 32, 1611-1615.
    CrossRef
  59. Hossain, A. G. M. M.; Ogura, K., Indian J. Chem., 1996, 35A, 373-378.
  60. Brewerp,D. G.;Wong, P. T. T.;Sears, M. C.,Canadian J. Chem., 1968, 46(20), 3119-3128.
    CrossRef
  61. https://www.chemicalbook.com/SpectrumEN_123-56-8_1HNMR.htm.
  62. http://www.molbase.com/moldata/2973-spectrum.html.
  63. http://isotope.com/uploads/File/new_datachart.pdf.
  64. Pekmez, N. Ö.; Can, M.; Yildiza, A., Acta Chim. Slov., 2007, 54, 131-139.
  65. Wanga, X.;Heinemanna F. W.; Yangb, M.;Melcherc, B. U.;Feketec, M.;Mudringb, A. V.; Wasserscheidc, P.;Meyera, K., Supplementary Material (ESI) for Chemical Communications, The Royal Society of Chemistry, 2009.
  66. Kumari, N.; Sharma, M.; Das,, P.; Dutta, D. K., Applied Organomet. Chem., 2002, 16, 258-264.
    CrossRef
  67. https://www.chemicalbook.com/SpectrumEN_123-56-8_13CNMR.htm.
  68. https://en.wikipedia.org/wiki/Deuterated_DMSO#:~:text=Pure%20deuterated%20DMSO%20shows%20no,is%2039.52ppm%20(septet).
  69. https://www.chemicalbook.com/SpectrumEN_109-99-9_13cnmr.htm.
  70. https://sciencing.com/measure-zone-inhibition-6570610.html.
  71. http://www.sisweb.com/referenc/tools/exactmass.htm.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

About The Author