ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039
     FacebookTwitterLinkedinMendeley

Density and Viscosity of LiCl, LiBr, LiI and Kcl in Aqueous Methanol at 313.15K

V. V. Kadam1*, A. B. Nikumbh2, T. B. Pawar3 and V. A. Adole4

1Department of Chemistry, Arts, Science and Commerce College Surgana, Dist. Nashik, Maharashtra, Affiliated to SPPU Pune, India.

2Department of Chemistry, S.S.G.M. College, Kopargaon Dist. Ahemadnagar, Affiliated to SPPU Pune, India.

3Department of Chemistry, L.V.H. Arts, Science and Commerce College Panchavati, Dist. Nashik, Maharashtra, Affiliated to SPPU Pune, India.

4Department of Chemistry, Arts, Science and Commerce college, Manmad , Dist. Nashik , Maharashtra , Affiliated to SPPU Pune, India.

Corresponding Author E-mail: kadamvv18@gmail.com

DOI : http://dx.doi.org/10.13005/ojc/370510

Article Publishing History
Article Received on : 02-Apr-2021
Article Accepted on :
Article Published : 05 Oct 2021
Article Metrics
Article Review Details
Reviewed by: Dr. Mandar Karve
Second Review by: Dr. Soon Min Ho
Final Approval by: Dr. Ayssar Nahle
ABSTRACT:

The densities and viscosities of electrolytes are essential to understand many physicochemical processes that are taking place in the solution. In the present research, the densities and viscosities of lithium halides, LiX (X = Cl, Br, I ) and KCl in (0, 20, 40, 50, 60, 80 and 100) mass % of methanol + water at 313.15K were calculated employing experimental densities (ρ), the apparent molar volumes( ϕv) and limiting apparent molar volumes (0v) of the electrolytes. The (0v) of electrolyte offer insights into solute-solution interactions. In terms of the Jones-Dole equation for strong electrolyte solution, the experimental data of viscosity were explored. Viscosity coefficients A and B have been interpreted and discussed. The B-coefficient values in these systems increase with increase of methanol in the solvents mixtures. This implied that when the dielectric constant of the solvent decreases, so do the solvent-solvent interactions in these systems.

KEYWORDS:

Apparent Molar Volume; Density; Viscosity

Download this article as: 

Copy the following to cite this article:

Kadam V. V, Nikumbh A. B, Pawar T. B, Adole V. A. Density and Viscosity of LiCl, LiBr, LiI and Kcl in Aqueous Methanol at 313.15K. Orient J Chem 2021;37(5).


Copy the following to cite this URL:

Kadam V. V, Nikumbh A. B, Pawar T. B, Adole V. A. Density and Viscosity of LiCl, LiBr, LiI and Kcl in Aqueous Methanol at 313.15K. Orient J Chem 2021;37(5). Available from: https://bit.ly/2YwT3Pb


Introduction

The density and viscosity data of electrolyte solutions have been extremely valuable in determining whether or not ion-solvent interactions exist in aqueous and non-aqueous solutions.1 For a better knowledge of many physicochemical processes that occur in the chemical industry and in nature, Crystallization, desalination, waste water treatment, pollution control, oil recovery, heat and mass transfer, fluid flow, mineral transport and deposition, corrosion, and other processes all rely on the transport properties (viscosity and thermal conductivity) of aqueous electrolyte solutions in a wide range of solvent concentrations, solution temperatures, and pressures. In many applications, these processes take place at high temperatures and pressures. For understanding ion-solvent interactions, temperatures and concentration dependencies of the viscosity of aqueous electrolyte solutions are indeed important.2-9

Viscosity is one of the important transport properties of electrolyte solutions and belongs to a dynamic state property, while density is one of the key thermodynamic features of electrolyte solutions and contributes to an equilibrium property.10-12 Researchers have explored the use of density and viscosity of mixtures to derive thermodynamic properties like dynamic viscosity, kinematic viscosity, deviations in dynamic viscosity, excess molar volume, surface tension deviation, apparent molar volumes, etc.13-16.  In this paper we report, limiting apparent molar volume (f0v) of some lithium halides LiX (X= Cl Br I) in water + methanol at different temperature using density property. An attempt is to make determine the effect of variation of (f0v) with methanol content for a given electrolyte. The viscosities of Lithium halides solution in (0, 20, 40, 50, 60, 80 and 100) mass % of methanol + water at different temperatures to see how changing the solvent content affects the viscosity B-coefficient.

Experimental

Water was distilled over alkaline KMnO4 in a rapid fit system, and then distilled again over H2SO4. The electric conductance of distilled water varied between 1×10-6 and 9×10-77 Ω-1 cm-1. Methanol with A.R. grade from SD Fine Chemical limited was directly used without further purification. LiCl anhydrous was from S D fine chemicals limited Mumbai product no. 230374, batch no. KO3Y/0703/1910/31 with purity 99%. LiBr anhydrous was from Sigma-Aldrich product no. 44987-3 batch no. MKBF4487V with purity 99.9%. LiI anhydrous was from  Sigma-Aldrich  product no. 43974-6 batch no. MKBD 2730 with purity 99.9%.KCl was from SD Fine Chemical limited Mumbai product no. 20198, batch no.KO5,H10Y/0710/1408/31 with purity 99.5%.

By mixing known quantities of water and methanol in glass-stoppered flasks, methanol + water mixes of compositions (0, 20, 40, 50, 60, 80, and 100) mass percent methanol were prepared. A bicapillary pycnometer was used to measure the density of the solution, with an accuracy of ± 1×10-4 g/cm3 as described earlier17-19. The pycnometer was placed in a temperature-controlled water bath with thermal stability of ± 0.01K for 15 min to attain thermal equilibrium. An Ubbelohde suspended level viscometer was used to measure viscosities20-22. Water conductivity was used to calibrate the device. For the flow time measurements, an electronic digital stop watch with a readability of ±0.01s was employed.

Results and Discussion

The values of experimentally determined density for the pure liquids at are given in Table-1. Experimental densities (ρ) and viscosities (η) of pure liquids were in good agreement with literature values at different temperatures. The densities of LiCl, LiBr, LiI and KCl solutions having concentrations ranging between 0.005 to 0.05 M in 0, 20, 40, 50, 60, 80 and 100 wt % of water + methanol binary mixtures at different temperatures are measured. The observed densities ρ, of the solutions Lithium halides in water, methanol and methanol + water mixtures are used to calculate the apparent malar volumes fv using the equation.

Table 1: Comparison of Experimental Densities (ρ) and Viscosities (η) of Pure Liquids    with Literature Values at different temperatures.

Temp.

K)

ro (g/ cm3)

h0 (m Pa s )

Expl.

Lit.

Expl.

Lit.

Water

298.15

0.99706

0.997127

0.8944

0.894928

   

0.9970528

 

0.890329

303.15

0.99570

0.995727

0.7987

0.80030

308.15

0.99405

0.99440630

0.7195

0.72127

313.15

0.99208

0.992327

0.6538

0.65427

   

0.992231

 

0.6526332

Methanol

298.15

0.78662

0.7866228

0.5490

0.54433

303.15

0.78139

(0.7825-

0.5126

0.50727

 

 

0.78181)33

 

 

308.15

0.77640

0.77699034

0.4787

0.47427

313.15

0.77130

0.772327

0.4477

0.45027

Where ρ and ρ0 are the densities of solution and solvents respectively, C is the concentration in mol liter-1.  The densities ρ and apparent molar volumes fv, for LiCl, LiBr, LiI and KCl in different methanol + water mixtures at 313.15 K are given in the Table-2 and Table-3. The densities and viscosities of LiCl, LiBr, LiI and KCl were found to increase with the increase in concentration of electrolytes. fv varied linearly with C1/2 over the concentration range. The electrolytes’ limiting partial molar volume (f0v) was calculated using computerised least square fitting of the Masson equation-2.

Table 2: Densities ρ, apparent molar volumes fv, and viscosities ɳ, for LiCl and LiBr in different methanol + water mixtures at 313.15K

LiCl

LiBr

C/ mol.dm-3

ρ /g.cm-3

fv / cm3. mol -1

ɳ / mPa s

C/ mol.dm-3

ρ /g.cm-3

fv /cm3.

mol-1

ɳ / mPa s

0 % Methanol

0.0050

0.99228

18.99

0.6603

0.0059

0.99252

25.39

0.6603

0.0120

0.99244

19.09

0.6612

0.0103

0.99279

25.45

0.6608

0.0160

0.99253

19.14

0.6617

0.0160

0.99314

25.55

0.6614

0.0207

0.99264

19.19

0.6622

0.0206

0.99343

25.59

0.6619

0.0257

0.99276

19.24

0.6628

0.0270

0.99382

25.68

0.6625

0.0310

0.99288

19.28

0.6634

0.0303

0.99402

25.70

0.6628

0.0351

0.99298

19.31

0.6639

0.0360

0.99437

25.75

0.6633

0.0420

0.99313

19.36

0.6646

0.0400

0.99461

25.80

0.6637

0.0454

0.99321

19.38

0.6650

0.0462

0.99499

25.88

0.6643

0.0508

0.99334

19.42

0.6656

0.0515

0.99531

25.93

0.6647

20 % Methanol

0.0051

0.95795

13.05

0.9663

0.0053

0.95814

24.68

0.9680

0.0105

0.95811

13.10

0.9677

0.0123

0.95858

24.81

0.9705

0.0168

0.95830

13.15

0.9691

0.0162

0.95882

24.88

0.9717

0.0201

0.95840

13.17

0.9698

0.0203

0.95908

24.95

0.9728

0.0256

0.95856

13.21

0.9710

0.0267

0.95948

25.02

0.9745

0.0305

0.95871

13.24

0.9720

0.0294

0.95965

25.05

0.9752

0.0365

0.95888

13.27

0.9732

0.0347

0.95998

25.11

0.9765

0.0413

0.95903

13.29

0.9741

0.0408

0.96036

25.17

0.9779

0.0474

0.95921

13.32

0.9753

0.0457

0.96067

25.20

0.9791

0.0510

0.95931

13.33

0.9760

0.0528

0.96111

25.26

 

40 % Methanol

0.0058

0.92147

9.74

1.4296

0.0051

0.92162

22.35

1.1280

0.0127

0.92170

9.75

1.4368

0.0111

0.92202

22.30

1.1318

0.0155

0.92180

9.75

1.4393

0.0158

0.92233

22.27

1.1344

0.0209

0.92198

9.76

1.4438

0.0220

0.92274

22.24

1.1375

0.0268

0.92218

9.77

1.4483

0.0247

0.92292

22.23

1.1388

0.0336

0.92240

9.78

1.4532

0.0314

0.92337

22.20

1.1419

0.0355

0.92247

9.78

1.4545

0.0350

0.9236

22.18

1.1435

0.0400

0.92262

9.78

1.4575

0.0428

0.92412

22.15

1.1468

0.0467

0.92284

9.79

1.4619

0.0448

0.92426

22.14

1.1476

0.0525

0.92303

9.80

1.4656

0.0513

0.92469

22.12

 

50 % Methanol

0.0052

0.90038

7.05

1.1174

0.0065

0.90065

17.83

1.1086

0.0103

0.90056

7.00

1.1263

0.0104

0.90093

17.77

1.1122

0.0168

0.90080

6.96

1.1354

0.0153

0.90128

17.70

1.1162

0.0200

0.90091

6.94

1.1394

0.0211

0.90169

17.63

1.1205

0.0260

0.90113

6.91

1.1463

0.0263

0.90206

17.58

1.1241

0.0296

0.90126

6.89

1.1502

0.0319

0.90246

17.53

1.1279

0.0362

0.90150

6.86

1.1570

0.0340

0.90261

17.51

1.1292

0.0418

0.90171

6.84

1.1625

0.0416

0.90315

17.46

1.1340

0.0456

0.90184

6.83

1.1660

0.0445

0.90336

17.44

1.1358

0.0513

0.90205

6.81

1.1712

0.0502

0.90376

17.41

 

60 % Methanol

0.00497

0.86746

2.96

1.0232

0.0055

0.86767

14.63

1.0103

0.0111

0.86770

2.98

1.0369

0.0105

0.86804

14.64

1.0160

0.0158

0.86789

2.99

1.0456

0.0164

0.86848

14.65

1.0220

0.0205

0.86808

3.00

1.0534

0.0216

0.86886

14.66

1.0268

0.0251

0.86826

3.01

1.0604

0.0263

0.86921

14.67

1.0310

0.0314

0.86851

3.02

1.0695

0.0313

0.86958

14.68

1.0353

0.0356

0.86868

3.03

1.0752

0.0362

0.86994

14.69

1.0395

0.0409

0.86889

3.04

1.0821

0.0392

0.87017

14.69

1.0419

0.0452

0.86906

3.05

1.0875

0.0462

0.87068

14.70

1.0475

0.0505

0.86927

3.06

 

0.0509

0.87103

14.71

 

80 % Methanol

0.0050

0.83033

-1.20

0.7993

0.0056

0.83055

10.85

0.7873

0.0100

0.83054

-1.16

0.8098

0.0102

0.8309

10.98

0.7921

0.0165

0.83083

-1.12

0.8209

0.0153

0.8313

11.09

0.7968

0.0196

0.83096

-1.10

0.8256

0.0214

0.83177

11.21

0.8020

0.0249

0.83119

-1.08

0.8332

0.0253

0.83207

11.30

0.8051

0.0306

0.83143

-1.05

0.8407

0.0327

0.83264

11.42

0.8108

0.0364

0.83168

-1.01

0.8480

0.0345

0.83278

11.46

0.8122

0.0407

0.83187

-0.99

0.8531

0.0388

0.83311

11.54

0.8154

0.0454

0.83207

-0.97

0.8586

0.0464

0.83369

11.63

0.8209

0.0520

0.83236

-0.95

 

0.0517

0.8341

11.69

 

100 % Methanol

0.0053

0.77248

-1.75

0.0053

0.0059

0.77273

7.55

0.4597

0.0100

0.77269

-1.68

0.0100

0.0103

0.77308

8.12

0.4598

0.0155

0.77293

-1.65

0.0155

0.0167

0.77359

8.56

0.4605

0.0206

0.77315

-1.61

0.0206

0.0214

0.77397

8.69

0.4612

0.0269

0.77342

-1.56

0.0269

0.0259

0.77432

8.97

0.4620

0.0290

0.77351

-1.54

0.0290

0.0326

0.77485

9.19

0.4633

0.0365

0.77384

-1.50

0.0365

0.0371

0.7752

9.50

0.4642

0.0403

0.77401

-1.49

0.0403

0.0413

0.77553

9.62

0.4651

0.0450

0.77421

-1.47

0.0450

0.0447

0.7758

9.62

0.4659

0.0492

0.77439

-1.45

0.0492

0.0498

0.7762

9.88

 

 

Table 3: Densities ρ, apparent molar volumes fv, and viscosities ɳ, for LiI and KCl in different methanol + water mixtures at 313.15K

LiI

KCl

C/mol.

dm-3

ρ /g.cm-3

fv/cm3 .mol -1

ɳ/mPa s

C/mol.

dm-3

ρ /g.cm-3

fv/cm3 .mol -1

ɳ/mPa s

0 % Methanol

0.0051

0.99265

37.23

0.6599

0.0054

0.99241

29.26

0.6599

0.0101

0.99314

37.27

0.6603

0.0099

0.99261

29.48

0.6601

0.0156

0.99367

37.30

0.6607

0.0158

0.99287

29.78

0.6604

0.0201

0.99411

37.32

0.6610

0.0203

0.99307

29.96

0.6605

0.0251

0.99459

37.34

0.6613

0.0253

0.99329

30.08

0.6607

0.0299

0.99505

37.36

0.6616

0.0296

0.99348

30.19

0.6609

0.0344

0.99549

37.38

0.6619

0.0352

0.99373

30.24

0.6610

0.0400

0.99603

37.40

0.6623

0.0402

0.99395

30.31

0.6612

0.0500

0.99699

37.43

0.6629

0.0450

0.99416

30.39

0.6613

 

 

 

 

0.0501

0.99438

30.48

0.6615

20 % Methanol

0.0053

0.95833

36.12

0.9749

0.0152

0.95854

27.01

0.9663

0.0109

0.95888

36.25

0.9799

0.0208

0.95882

26.64

0.9666

0.0201

0.95979

36.38

0.9860

0.0254

0.95904

26.86

0.9669

0.0251

0.96028

36.45

0.9888

0.0304

0.95928

27.01

0.9672

0.0313

0.96089

36.51

0.9920

0.0352

0.95950

27.41

0.9674

0.0349

0.96125

36.55

0.9938

0.0401

0.95974

27.32

0.9677

0.0398

0.96173

36.60

0.9961

0.0463

0.96003

27.55

0.9679

0.0523

0.96296

36.71

1.0014

0.0504

0.96022

27.70

0.9681

0.0554

0.96326

36.74

1.0027

0.0554

0.96046

27.70

0.9683

40 % Methanol

0.0056

0.92187

30.81

1.1244

0.0152

0.92211

22.01

1.1223

0.0098

0.92231

30.77

1.1258

0.0202

0.92237

22.24

1.1223

0.0199

0.92338

30.70

1.1287

0.0254

0.92265

22.42

1.1223

0.0261

0.92403

30.66

1.1305

0.0305

0.92292

22.59

1.1223

0.0306

0.92451

30.64

1.1317

0.0351

0.92316

22.78

1.1223

0.0354

0.92502

30.62

1.1330

0.0401

0.92342

22.99

1.1223

0.0412

0.92563

30.59

1.1346

0.0451

0.92368

23.16

1.1223

0.0496

0.92652

30.56

1.1368

0.0503

0.92395

23.30

1.1223

0.0551

0.92710

30.54

1.1382

0.0551

0.92420

23.40

1.1223

50 % Methanol

0.0047

0.90071

25.78

1.1029

0.0051

0.90048

19.65

1.0990

0.0107

0.90137

25.65

1.1064

0.0108

0.90080

20.17

1.1000

0.0203

0.90244

25.50

1.1114

0.0201

0.90131

20.92

1.1016

0.0249

0.90295

25.44

1.1136

0.0266

0.90167

21.22

1.1027

0.0319

0.90373

25.36

1.1169

0.0318

0.90195

21.51

1.1037

0.0350

0.90408

25.33

1.1184

0.0351

0.90212

21.73

1.1043

0.0399

0.90462

25.27

1.1206

0.0416

0.90247

21.93

1.1054

0.0504

0.90579

25.18

1.1252

0.0497

0.90291

22.13

1.1069

0.0551

0.90632

25.14

1.1273

0.0551

0.90319

22.27

1.1079

60 % Methanol

0.0049

0.86782

22.27

1.0070

0.0054

0.86759

14.86

1.0007

0.0109

0.86851

22.23

1.0125

0.0094

0.86784

15.18

1.0019

0.0225

0.86984

22.18

1.0217

0.0230

0.86866

15.77

1.0058

0.0254

0.87017

22.17

1.0238

0.0267

0.86888

16.00

1.0069

0.0301

0.87071

22.16

1.0272

0.0305

0.86911

16.21

1.0080

0.0352

0.87129

22.15

1.0307

0.0362

0.86944

16.52

1.0097

0.0410

0.87196

22.13

1.0347

0.0430

0.86984

16.78

1.0117

0.0498

0.87297

22.11

1.0406

0.0528

0.87041

17.17

1.0146

0.0551

0.87358

22.10

1.0441

0.0551

0.87055

17.22

1.0153

80 % Methanol

0.0061

0.83083

19.39

0.7858

0.0058

0.83049

11.92

0.7788

0.0110

0.83140

19.56

0.7900

0.0106

0.83079

12.07

0.7804

0.0199

0.83245

19.77

0.7967

0.0203

0.83141

12.72

0.7837

0.0242

0.83295

19.86

0.7998

0.0255

0.83174

12.90

0.7856

0.0319

0.83385

19.99

0.8049

0.0317

0.83213

13.23

0.7877

0.0354

0.83426

20.06

0.8072

0.0365

0.83243

13.37

0.7894

0.0413

0.83495

20.15

0.8110

0.0401

0.83265

13.50

0.7907

0.0508

0.83605

20.30

0.8169

0.0512

0.83334

13.83

0.7946

0.0551

0.83655

20.36

0.8195

0.0551

0.83358

13.94

0.7960

100 % Methanol

0.0067

0.77307

15.13

0.4574

0.0057

0.77266

2.60

0.4638

0.0103

0.77351

15.46

0.4569

0.0107

0.77302

2.99

0.4653

0.0197

0.77464

16.10

0.4567

0.0206

0.77373

3.50

0.4686

0.0253

0.77531

16.44

0.4570

0.0261

0.77412

3.76

0.4705

0.0312

0.77602

16.71

0.4574

0.0309

0.77446

3.92

0.4721

0.0357

0.77656

16.93

0.4579

0.0358

0.77481

4.08

0.4738

0.0410

0.77719

17.18

0.4585

0.0411

0.77518

4.29

0.4756

0.0520

0.77850

17.60

0.4600

0.0508

0.77586

4.62

0.4790

0.0551

0.77887

17.71

0.4604

0.0556

0.77619

4.77

0.4806

 

Where ‘f0v’ is the limiting partial malar volume at infinite dilution and Sv is the experimental slope. The f0v and Sv values are presented in Table-4. The f0v is regarded as a measure of solute-solvent interactions. The f0v for LiCl, LiBr and LiI is increases regularly as the size of Lithium halide increases. As the solvent composition varies, the values of f0v vary as well. Various researchers have seen a shift in f0v with different concentrations of other solvents in water in the case of electrolytes.23-25 The Sv values of LiCl are negative in water and methanol mixtures at 50 % methanol indicating some ion-ion interactions shown in Table-4. Similarly, the Sv values of LiBr are negative in water and methanol mixtures at 40 % and 50 % methanol and LiI shows it negative at 40, 50, 60 % methanol indicating ion-ion interactions. The negative slope indicating the ionic dissociation of the electrolytes26.

Table 4: Apparent molar volumes, (f0v, cm3 mol-1) and experimental slopes (Sv cm3 L1/2  mol-3/2), along with correlation coefficient, γ, of Lithium halides  in different water  + methanol at 313.15K.

Electrolyte

   Mass %   methanol

   f0v, /cm3 mol-1

            Sv /cm3 L1/2  mol-3/2

   γ

LiCl

 

 

 

 

 

0

18.79

2.78

0.9998

 

20

12.91

1.86

0.9993

 

40

9.17

0.39

0.9868

 

50

7.16

-1.56

-0.9996

 

60

2.91

0.64

0.9951

 

80

-1.33

1.63

0.9960

 

100

-1.89

2.01

0.9975

LiBr

 

 

 

 

 

0

25.09

3.58

0.9955

 

20

24.41

3.75

0.9993

 

40

22.46

-1.48

-0.9991

 

50

18.07

-2.99

-0.9992

 

60

14.59

0.54

0.9933

 

80

10.41

5.65

0.9988

 

100

6.50

15.19

0.9951

LiI

 

 

 

 

 

0

37.14

1.31

0.9995

 

20

35.85

3.77

0.9998

 

40

30.94

-1.70

-0.9998

 

50

26.05

-3.87

-0.9999

 

60

        22.34

-1.02

-0.9983

 

80

18.91

6.15

0.9997

 

100

13.74

16.91

0.9999

KCl

 

 

 

 

 

0

28.74

8.00

0.9891

 

20

25.58

9.00

0.8923

 

40

20.40

12.90

0.9981

 

50

18.52

16.50

0.9962

 

60

13.68

14.83

0.9943

 

80

10.81

13.35

0.9968

 

100

1.59

13.39

0.9996

 

The f0v values for lithium halides in water and water + methanol are plotted against molecular weight of corresponding halide ions using an equation of the form

Where ‘b’ is constant and f0v (Li) is the limiting ionic partial molar volume of Li+ ions. The plot of f0v of electrolytes versus molecular weight of corresponding halide ions is given in the Fig.-1. An excellent linear relationship was observed for all lithium halides solutions in all solvents with γ greater than 0.9999. The extrapolation of graphs of f0v versus molecular weight of halide ion to zero ionic formula weight gives the partial molar volume of Li+ ion. The Table-5 represents the value of ionic partial malar volumes of all the ions in all solvents at 313.15K. It demonstrates that the ionic partial molar volumes of halides ions (X-) fluctuate with the solvent composition over time, peaking at 20% methanol. There are no more holes in the binary solvents at 20% methanol, and the dissolving of the third component, the solute, necessitates the solvent’s maximum expansion to accommodate the solute. As a result, there should be a peak in the partial molar volume of the halides ions (X-).

Figure 1: Plots of φ0v versus Molecular weights of Cl, Br, I in different methanol + water mixtures at 313.15 K.

Click here to View figure 

Table 5: Ionic partial molar volumes, ϕ0v of ions in various methanol + water mixtures at 313.15K

%Methanol

K+

Cl

Br

I

Li+

0

20.71

8.03

14.33

26.38

10.76

20

16.81

8.77

20.27

31.71

4.14

40

13.56

6.84

20.13

   28.61

2.33

50

11.80

6.72

17.63

25.61

0.44

60

6.93

6.75

18.43

   26.18

-3.84

80

3.63

7.18

18.92

27.42

-8.51

100

-4.19

5.78

14.17

   24.41

-7.67

 

The viscosities of solutions of the LiCl, LiBr, LiI and KCl  in water methanol and methanol-water mixtures are measured at 313.15 K . The observed viscosities η, of Lithium halides in water, methanol and methanol + water mixtures at 313.15K are analysed with the help of Jones-Dole equation22.

Where η is the viscosity of the solution and ηo is the viscosity of the solvent, and C is the molar concentration. A is the measure of long range Columbic forces between ions, while B reflects the effect of ion- solvent interactions. Plots of (ηr – 1) /C1/2  versus C1/2  for the electrolytes are straight lines with intercept equal to A, and  the slope give the values of the  viscosity B-coefficients. The A and B coefficients obtained with a computerised least square method are listed in Table-6. Fig.-2 depicts plots of (ɳr – 1)/C1/2 versus C1/2 of LiCl in different methanol + water mixtures at 313.15 K.

Table 6: Parameters of Jones – Dole Equation A and B along with correlation coefficient, γ, for Lithium halides in different water + methanol at 313.15K

Electrolyte

Mass % methanol

A / dm3/2.mol-1/2

B / dm3.mol-1

γ

LiCl

 

 

 

 

 

0

0.0085

0.1471

0.9995

 

20

0.0162

0.1645

0.9997

 

40

0.0883

0.2053

0.9998

 

50

0.2171

0.3354

1.0000

 

60

0.3009

0.538

1.0000

 

80

0.3584

0.6271

1.0000

 

100

     -0.0276

0.8181

0.9999

LiBr

 

 

 

 

 

0

0.0090

0.1180

0.9991

 

20

0.0414

0.1392

0.9995

 

40

0.0596

0.2303

0.9999

 

50

0.0866

0.3471

0.9999

 

60

0.1077

0.5428

1.0000

 

80

0.1292

0.6135

1.0000

 

100

     -0.1322

0.8034

1.0000

LiI

 

 

 

 

 

0

0.0045

0.0859

0.9987

 

20

0.1415

0.1159

0.9995

 

40

0.0150

0.2003

0.9999

 

50

0.0395

0.3106

0.9999

 

60

0.0755

0.4915

1.0000

 

80

0.0985

0.5708

1.0000

 

100

-0.1862

0.7240

1.0000

KCl

 

 

 

 

 

0

0.0089

0.0230

09724

 

20

0.0143

             0 .0125

0.9417

 

40

0.0045

            -0.0141

-0.9906

 

50

     -0.0032

              0.1721

0.9998

 

60

     -0.0029

 0.3026

0.9943

 

80

     -0.0074

 0.4728

1.0000

 

100

     -0.0152

 0.7809

0.9999

 

Figure 2: Plots of (ɳr – 1)/C1/2 versus C1/2 of LiCl in different methanol + water mixtures at 313.15 K.

Click here to View figure 

There is a slow variety in ionic B esteems as the methanol content in the blended dissolvable increments. Both methanol and water are solvents which have intermolecular hydrogen holding. The expansion of methanol to water, first reinforces the three dimensional construction of the water, then, at that point further expansion of methanol causes depolymerisation of water structure, however intermolecular communication among methanol and water lead to arrangement of methanol-water edifices with a greater hydrodynamic element.

The B values of all lithium halides electrolytes (LiCl, LiBr, and LiI) are positive in all solvent compositions and continuously increases with increase of methanol. These positive B-parameters indicate structure making tendency of lithium halides in these solvent mixture. The B-coefficient of the KCl solutions in 50 to 100 wt% methanol are positive and continuously increases with increases of methanol. These positive B-parameters indicate structure making tendency of KCl in these solvents mixtures. The B- coefficient of KCl falls from solution in water to those in 20 to 40 wt % methanol but then rises again in the subsequent solvent mixtures. A-coefficients either positive or negative are very low in magnitudes indicating weak solute- solute interaction.

In summary, density and viscosity of four alkali chlorides and iodides namely LiCl, LiBr, LiI and KCl in aqueous methanol at 313.15 K were calculated using the electrolytes’ experimental densities, apparent molar volumes, and limiting apparent molar volumes. The experimental data on viscosity of these electrolytes were interpreted using the Jones-Dole equation for strong electrolyte solutions.  The densities and viscosities of LiCl, LiBr, LiI and KCl were found to increase with the increase in concentration of electrolytes. The apparent molar volumes varied linearly with C1/2 over the concentration range. Our investigation on density and viscosity of the electrolytic solution studied in the revealed that when the dielectric constant of the solvent decreases, so also the solvent-solvent interactions in these systems. Furthermore, the experimental densities and viscosities of pure liquids were found to be in acceptable concurrence with reported values at various temperatures. In all solvent compositions, the B values of all lithium halide electrolytes are positive and increase with increasing methanol concentration. These positive B-parameters imply that lithium halides in these solvent mixtures have a tendency to form structures.

Acknowledgement

Authors would like to thank principals of SSGM College, Kopargaon and Arts, Science and Commerce College, Surgana for permission and providing necessary research facilities. Dr. Aapoorva Hiray, Coordinator, MG Vidyamandir institute, is gratefully acknowledged for continuous support. NCL, Pune is acknowledged for literature survey.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest

Funding Source

There are no funding Source

References

  1. Millero, F., Water and Aqueous Solution, 1972. 519-564.
  2. Anderko, A.; Wang, P.; Rafal, M., Fluid Ph. Equilibria, 2002, 194, 123-142.
    CrossRef
  3. Chandra, A.; Bagchi, B., J. Phys. Chem. B, 2000, 104, 9067–9080
    CrossRef
  4. Chandra, A.; Bagchi, B., J. Phys. Chem. B, 2000, 113, 3226-3232.
    CrossRef
  5. Ling, G.N.; Horne, R.A., New York: Wiley-Interscience,1972, 663-699.
  6. Horvath, A.L., Halsted Press, 1985.
  7. Jiang, J.; Sandler, S.I., Ind. Eng. Chem. Res., 2003, 42(25), 6267-6272.
    CrossRef
  8. Stokes, R.H.; Mills, R.; Armstrong, H.L., Am. J. Phys., 1966, 34(3), 280-281.
    CrossRef
  9. Esteves, M.J.C.; JE de, M.; Cardoso, OE Barcia., Ind. Eng. Chem. Res, 2001, 40, 5021-5028.
    CrossRef
  10. Li, X.X.; Liu, Y.X.; Wei, X.H., J. Chem. Eng. Data., 49(4), 2004, 1043-1045.
    CrossRef
  11. Wang, L.C.; Xu, H.S.; Zhao, J.H.; Song, C.Y.; Wang, F.A., J. Chem. Eng. Data., 2005, 50(1), 254-257.
    CrossRef
  12. Zhang, P.; Wang, F.A.; Wang, J.Y.; Li, C.W.; Ren, B.Z., J. Mol. Liq., 142(1-3), 22-28.
    CrossRef
  13. Gahlyan, S.; Bhagat, P.; Maken, S.; Park, S.J., J. Mol. Liq., 2020, 306, 112859.
    CrossRef
  14. Alam, M.S.; Siddiq, A.M., J. Mol. Liq., 2017, 242, 1075-1084.
    CrossRef
  15. Zhang, S.; Zhao, L.; Yue, X.; Li, B.; Zhang, J., J. Mol. Liq., 2018, 264, 451-457.
    CrossRef
  16. Srinivasa Murthy, T., Int. J. Chem. Technol., 2020, 4(2), 109-120
  17. Nikam, P.S.; Pawar, T.B.; Sawant, A.B.; Hasan M., J. Mol. Liq., 2006, 126, 19-22.
    CrossRef
  18. Nikam, P.S.; Hasan, M.; Shewale, R.P.; Sawant, A.B., J. Solution Chem., 2003, 32(11), 987-995.
    CrossRef
  19. Bhalodia, J.; Sharma, S., J. Solution Chem., 2013, 42(9), 1794-1815.
    CrossRef
  20. Shekaari, H.; Bezaatpour, A.; Elhami, R., J. Solution chem., 2012, 41(3), 516-524.
    CrossRef
  21. Ouerfelli, N.; Barhoumi, Z.; Iulian, O., J. Solution chem., 2012, 41(3), pp.458-474.
    CrossRef
  22.  Li, Y.; Li, Y.H.; Wang, F.A.; Ren, B.Z., J. Chem. Thermodyn., 2013, 66, 14-21.
    CrossRef
  23. Nikam, P.S.; Sawant, A.B., J. Chem. Eng. Data, 1997, 42(3), 585-589.
    CrossRef
  24. Conway, B.E.; Verrall, R.E. Desnoyers, J.E., J. Chem. Soc. Faraday Trans., 1966, 62, pp.2738-2749.
    CrossRef
  25. Macdonald, D.D.; Hyne, J.B., Can. J. Chem. 1970, 48(15), 2416-2422.
    CrossRef
  26. Hazra, D.K.; Das, B., J. Chem. Eng. Data, 1991, 36, 403-405.
    CrossRef
  27. Mikhail, S.Z.; Kimel, W.R., J. Chem. Eng. Data, 1961, 6(4), pp.533-537.
    CrossRef
  28. Zhang, S.; Li, H.; Dai, S.; Wang, T.; Han, S.; J. Chem. Eng. Data, 1997, 42(4), 651-654.
    CrossRef
  29. Dean, J.A., McGraw Hill, Bombay, 13th ed., 1987.
  30. Grant-Taylor, D.F.; Macdonald, D.D., Can. J. Chem., 1976, 54(17), 2813-2819.
    CrossRef
  31. Riddick, J.A., Techniques of chemistry, Organic solvents, Wiley, 1970.
  32. Riddick, J.A.; Bunger, W.B.; Sakano, T.K., Willey Inter Science, 1970.
  33. Timmermans, J., Physico-Chemical Constants of Pure Organic Compounds, Elsevier, New York, 1965.
  34. Sakurai, M.; Nakagawa, T., J. Chem. Thermodyn., 1984, 16(2), pp.171-174.
    CrossRef


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

About The Author