ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039
     FacebookTwitterLinkedinMendeley

Theoretical Prediction of Lipophilicity for Some Drugs Compounds

Ammar A. Ibrahim1*, Ali Y. Abd-Alrazzak1, Eid A. AbdalRazaq2, Entesar A. Sulliman3, Tamara Shamil1

1Dept. of Chemistry, College of Science, University of Mosul, Iraq

2Dept. of Chemistry, College of Science, Al-Hussein Bin Talal University, Ma'an, Jordan

3Al-Noor University College

Corresponding Author E-mail: ammar74@uomosul.edu.iq

DOI : http://dx.doi.org/10.13005/ojc/360115

Article Publishing History
Article Received on : 13 Dec 2019
Article Accepted on : 19 Feb 2020
Article Published : 20 Feb 2020
Article Metrics
ABSTRACT:

The theoretical calculations were evaluated for thirty four drugs compounds. Many parameters have been calculated theoretically and enter as a model to predicting the best values of practical (Log P). All these compounds were evaluated by semi- empirical (AM1) and Hartree Fock in basis set (HF/STO-3G) using Gaussian 03w. The thermodynamic descriptors like HOMO, LUMO, total energy, Gibbs Free Energy…etc were computed and played an important role for predictions the practical lipophilicity values. A linearity was shown when correlated with experimental data. Multiple linear regression analysis was performed to derive quantitative structure activity relationship models which were further evaluated for the predictions.

KEYWORDS:

Drug Compounds; HOMO; Lipophilicity, LUMO

Download this article as: 

Copy the following to cite this article:

Ibrahim A. A, Abd-Alrazzak A. Y, Abdalrazaq E. A, Sulliman E. A, Shamil T. Theoretical Prediction of Lipophilicity for Some Drugs Compounds. Orient J Chem 2020;36(1).


Copy the following to cite this URL:

Ibrahim A. A, Abd-Alrazzak A. Y, Abdalrazaq E. A, Sulliman E. A, Shamil T. Theoretical Prediction of Lipophilicity for Some Drugs Compounds. Orient J Chem 2020;36(1). Available from: https://bit.ly/3bVpybF


Introduction

Theoretical calculations have particularly succeeded for ionization potential(1), molecular docking approaches(2, 3)and metabolite of antipyrine(4).The lipophilicity is measured by the log P, which represents the equilibriumbetween a polar (aqueous) phase and apolar phase (often n-octanol,appropriate for the simulation of biological membranes)(5). The lipophilicity of a drug plays a significant role in numerous biological responses(6).

All the compounds studied have different lipophilicity degree which depends on the substituents involved in its structural chemistry(7).Using (Log P) parameter by (QSAR) developed for the pharmaceutical, biochemical and toxicological(8-10).

(QSAR) of a series of substituted benzo[a]phenazines, in regard to their anticancer  activity,  has  been  studied  using  the  density  functional  theory  (DFT) method,  molecular  mechanics  method  (MMC)  and  statistical  method.  The Lipophilicity indexes log P, the calculated log P by fragment-based methods) of the molecules were obtained(11).Electronic, stereochemical, lipophilic and topological descriptors were calculated for biological receptors called peroxisome proliferator-activated receptors (PPARs). which control the metabolism of carbohydrates and lipids(12).Dihydrofolate reductase (DHFR) inhibitors have proved to be of value asantibacterial,  antimalarial,  and  antitumor  agents.  Lipophilicity  of  the  whole molecule (log P) played an important role(13).

The smaller size of Co+2 reduces polarity andincreases the lipophilicity of the bacterial   membrane,   interrupting   normal   cellular   processes   and   enhancing theantifungal activity of Co+2 complex(14).In vitro and in vivo evaluation indicated that the prodrugs were freely soluble, more lipophilic than parent drug(15,16). Also, the lipophilicity was determined by normal phase TLC(17), HPLC(18)and QSPR(19).

Materials and Methods

All the calculations have been performed using ChemBio Office (version 11.0.1). The (GAUSSIAN 03W) program was employed for the calculations. The correlation coefficient (R), standard error (SE) and Fisher constant (F) were employed to judge the validity of regression equation. Many sets of drugs were taken which containing (OH-) hydroxy atom on the aliphatic and aromatic compounds.

The physicochemical properties were calculated include thermodynamic parameters DG, DH, DS, steric energy, electronic descriptors [logP, mol refractivity, the highest occupied molecular orbital energy (HOMO) and lowest unoccupied molecular orbital energy (LUMO)].

MM2 method was used firstly to find the best configuration stable form. The minimization is continued until the root mean square (RMS) gradient value reaches a value smaller than 0.001 kcal/mol Angstrom. Later, (AM1and HF/STO-3G) methods were used to calculate the physical properties of the drugs compounds.

Results and Discussion

Set one (AM1)

The first set of the drugs was shown in the table (1) beside the physical parameters which were calculated theoretically using (AM1) method. The relationship between the experimental reported log P values and the computed descriptors was determined using multi-linear regression. At using the enter method in (SPSS), the equation was :

logP= 0.939 + 8.343 (Free Energy) – 0.009 (CV) – 0.006 (S) – 1.082 (HF) – 0.002 (steric) + 9.957 (HOMO) – 5.811

(LUMO) + 0.241 (Mol Ref.) + 5.597 (Part. Coeff.) —— (1)

(No. 34 , R= 0.990 , St. Error = 0.335 , F= 127.442)

While at using (stepwise) method, the equation was shown at the following:

logP= -2.695 + 0.615  (Part. Coeff.) + 8.687 (Thermal Energy) —— (2)

(No. 34 , R= 0.988 , St. Error = 0.318 , F= 632.504)

Table 1: Experimental logP and physical parameters using (AM1) method

Drugs Log P Zero point Energies Thermal Energies Enthalpies Free Energies E (Thermal) CV
    Hartree Hartree Hartree Hartree Kcal/Mol cal/mol-K
Abacavir 0.72 0.32838 0.34716 0.34811 0.27737 217.848 70.565
Acyclovir -1.76 0.23925 0.25410 0.25504 0.19589 159.448 54.410
Adenosine -1.46 0.25538 0.27237 0.27332 0.20836 170.915 62.614
Albuterol 0.02 0.33358 0.35226 0.35320 0.28447 221.046 68.569
Atropine 1.53 0.38692 0.40565 0.40660 0.33719 254.550 72.015
Azacitidine -1.99 0.23007 0.24585 0.24679 0.18601 154.270 57.956
Carbidopa -0.19 0.24834 0.26441 0.26536 0.20412 165.920 59.183
Cytarabine -2.3 0.24291 0.25859 0.25954 0.19869 162.269 58.527
Decitabine -1.93 0.22512 0.23991 0.24086 0.18207 150.547 54.131
Desvenlafaxine 2.26 0.39517 0.41415 0.41510 0.34679 259.884 72.647
Dobutamine 2.49 0.38899 0.41093 0.41187 0.33115 257.860 81.035
Dyphylline -1.12 0.25841 0.27588 0.27683 0.21060 173.119 62.450
Floxuridine -1.2 0.21981 0.23464 0.23558 0.17618 147.238 55.063
Ganciclovir -2.07 0.24891 0.26584 0.26679 0.20226 166.818 61.578
Homatropine 1.57 0.35820 0.37548 0.37642 0.31073 235.617 67.254
Hydroxychloroquine 3.54 0.42694 0.45075 0.45169 0.36738 282.849 86.496
Isoetharine 1.13 0.33339 0.35212 0.35306 0.28513 220.957 68.544
Isoproterenol 0.25 0.27601 0.29223 0.29318 0.23010 183.379 58.751
Isoxsuprine 2.58 0.38944 0.41082 0.41177 0.33470 257.794 80.003
Lamivudine -1.02 0.20450 0.21852 0.21946 0.16227 137.123 51.660
Levobunolol 2.86 0.40632 0.42739 0.42833 0.35275 268.191 78.991
Metipranolol 2.67 0.42742 0.45283 0.45377 0.36751 284.155 89.840
Midodrine -0.32 0.30600 0.32443 0.32538 0.25729 203.585 67.361
Pyridoxine -1.9 0.18992 0.20219 0.20313 0.15134 126.875 43.813
Risedronic acid -2.94 0.20154 0.21959 0.22053 0.15486 137.794 65.868
Ritodrin 1.61 0.36055 0.37988 0.38083 0.30928 238.379 73.810
Stavudine -0.91 0.22577 0.24064 0.24159 0.17852 151.006 53.326
Terbutaline 0.48 0.30482 0.32204 0.32299 0.25716 202.085 63.950
Trihexyphenidyl 5.06 0.48781 0.50820 0.50914 0.43689 318.898 80.508
Tropicamide 1.16 0.34962 0.36833 0.36928 0.29971 231.132 70.344
Vidarabine -1.46 0.25544 0.27234 0.27328 0.20893 170.895 62.586
Vorinostat 0.86 0.33606 0.35572 0.35666 0.27938 223.216 69.985
Zalcitabine -1.51 0.23336 0.24698 0.24793 0.19143 154.985 50.659
Zoledronic acid -2.28 0.18294 0.20023 0.20117 0.13721 125.644 62.757

Table (1): Continued …

Drugs Log P S HF Steric energy HOMO LUMO Mol Ref. Partition Coefficient
    cal/mol-K Hartree   (a.u.) (a.u.)    
Abacavir 0.72 148.877 0.15097 40.67 -0.30382 0.00319 7.8973 0.8057
Acyclovir -1.76 124.491 -0.08041 15.51 -0.31690 0.00994 5.4966 -2.1354
Adenosine -1.46 136.720 -0.14181 38.25 -0.32661 -0.00929 6.2955 -2.1577
Albuterol 0.02 144.658 -0.22051 -0.12 -0.33796 0.00395 6.7632 0.0614
Atropine 1.53 146.082 -0.17317 32.90 -0.34748 0.00358 8.1462 1.2992
Azacitidine -1.99 127.931 -0.25863 12.92 -0.36931 -0.01385 5.3911 -2.1981
Carbidopa -0.19 128.890 -0.22215 -25.99 -0.32092 0.01247 5.7762 -0.4448
Cytarabine -2.3 128.064 -0.2743 15.34 -0.33873 -0.00018 5.6022 -2.1951
Decitabine -1.93 123.727 -0.18278 20.16 -0.36249 -0.00838 5.2380 -1.9012
Desvenlafaxine 2.26 143.772 -0.14428 17.43 -0.32439 0.01927 7.8241 2.6830
Dobutamine 2.49 169.890 -0.1674 1.32 -0.32084 0.00837 8.8106 2.4330
Dyphylline -1.12 139.395 -0.15661 26.39 -0.33688 -0.02165 6.2242 -1.2861
Floxuridine -1.2 125.014 -0.36648 22.05 -0.36340 -0.02766 5.3090 -1.4048
Ganciclovir -2.07 135.806 -0.14534 22.87 -0.31957 -0.01469 6.0691 -2.5448
Homatropine 1.57 138.272 -0.16281 27.30 -0.34750 0.00392 7.6824 1.4274
Hydroxychloroquine 3.54 177.453 -0.02964 24.86 -0.31718 -0.01819 9.7216 4.1159
Isoetharine 1.13 142.972 -0.20758 3.23 -0.32652 0.00245 6.7632 0.9914
Isoproterenol 0.25 132.761 -0.20465 -7.38 -0.32934 0.00299 5.8356 0.1534
Isoxsuprine 2.58 162.193 -0.14145 8.84 -0.32683 0.00385 8.8106 2.6150
Lamivudine -1.02 120.367 -0.09953 9.64 -0.32222 -0.01616 5.6385 -1.4624
Levobunolol 2.86 159.088 -0.19797 17.93 -0.33775 -0.01415 8.3236 2.2623
Metipranolol 2.67 181.563 -0.26987 19.15 -0.33847 -0.00504 8.6541 2.5454
Midodrine -0.32 143.306 -0.2255 -5.84 -0.32555 -0.00065 6.7038 -0.4248
Pyridoxine -1.9 109.014 -0.19064 4.10 -0.34360 -0.00701 4.3282 -0.3450
Risedronic acid -2.94 138.228 -0.66112 28.74 -0.37478 -0.01503 5.7520 -2.6224
Ritodrin 1.61 150.580 -0.15598 -1.74 -0.32844 0.01275 8.3468 1.6514
Stavudine -0.91 132.740 -0.1791 7.40 -0.35086 -0.00871 5.5788 -0.4875
Terbutaline 0.48 138.542 -0.20335 0.30 -0.33354 0.01039 6.2994 0.4824
Trihexyphenidyl 5.06 152.058 -0.1029 22.65 -0.33388 0.01885 9.3488 5.1510
Tropicamide 1.16 146.405 -0.05002 4.58 -0.35844 0.00185 8.3290 1.1806
Vidarabine -1.46 135.449 -0.14293 41.99 -0.31980 -0.00317 6.2955 -2.1577
Vorinostat 0.86 162.648 -0.14613 -8.32 -0.32383 0.01037 7.3609 0.9890
Zalcitabine -1.51 118.919 -0.14032 15.58 -0.34090 -0.00424 5.2960 -1.2469
Zoledronic acid -2.28 134.613 -0.61319 41.98 -0.34492 0.00261 5.1815 -3.0656

Table (2) was show the predicted of the (34) drugs using the equation (2). The correlation between the experimental and the predicted values shows an excellent predicted for the drugs (R= 0.988).

Table 2: Experimental and predicted of logP using (AM1) method

No Drugs Log P (Practical) Log P (Predicted) Residuals No Drugs Log P (Practical) Log P (Predicted) Residuals
1 Abacavir 0.72 0.816 0.096 18 Isoproterenol 0.25 -0.062 -0.312
2 Acyclovi -1.76 -1.801 -0.041 19 Isoxsuprine 2.58 2.482 -0.098
3 Adenosine -1.46 -1.656 -0.196 20 Lamivudine -1.02 -1.696 -0.676
4 Albuterol 0.02 0.403 0.383 21 Levobunolol 2.86 2.409 -0.451
5 Atropine 1.53 1.628 0.098 22 Metipranolol 2.67 2.804 0.134
6 Azacitidine -1.99 -1.911 0.079 23 Midodrine -0.32 -0.138 0.182
7 Carbidopa -0.19 -0.672 -0.482 24 Pyridoxine -1.9 -1.151 0.749
8 Cytarabine -2.3 -1.799 0.501 25 Risedronic acid -2.94 -2.400 0.540
9 Decitabine -1.93 -1.780 0.150 26 Ritodrin 1.61 1.621 0.011
10 Desvenlafaxine 2.26 2.553 0.293 27 Stavudine -0.91 -0.904 0.006
11 Dobutamine 2.49 2.371 -0.119 28 Terbutaline 0.48 0.399 -0.081
12 Dyphylline -1.12 -1.089 0.031 29 Trihexyphenidyl 5.06 4.888 -0.172
13 Floxuridine -1.2 -1.521 -0.321 30 Tropicamide 1.16 1.231 0.071
14 Ganciclovir -2.07 -1.951 0.119 31 Vidarabine -1.46 -1.656 -0.196
15 Homatropine 1.57 1.445 -0.125 32 Vorinostat 0.86 1.003 0.143
16 Hydroxychloroquine 3.54 3.752 0.212 33 Zalcitabine -1.51 -1.316 0.194
17 Isoetharine 1.13 0.974 -0.156 34 Zoledronic acid -2.28 -2.841 -0.561

In comparison between the predicted and the practical values, we noted that a linear correlation with an excellent correlation coefficient (R2= 0.976) as shown in figure (1).

Figure 1: Correlation between the predicted and the practical of logP for 34 drugs using (AM1)

Figure 1: Correlation between the predicted and the practical of logP for 34 drugs 

Click here to View Figure

Set two (HF/STO-3G)

The second set of the drugs was shown in the table (3) which was calculated theoretically using (HF/STO-3G) method. The relationship between the experimental reported log P values and the computed descriptors was determined using multi-linear regression.

By using the enter method in (SPSS), the equation was :

logP= -2.365 + 4.621 (Free Energy) +0.028(CV) – 0.015 (S) – 5.241×10-5(HF)-0.001(steric)+0.859(HOMO) +1.647(LUMO) + 0.178(Mol Ref.) + 0.612(Part. Coeff.) —— (3)

(No. 34 , R= 0.989 , St. Error = 0.345 , F= 119.98)

While  using (stepwise) method, the equation was shown at the following:

logP= -2.328+ 0.605(Part. Coeff.) + 8.042(Free Energy) —— (4)

(No. 34 , R= 0.988, St. Error = 0.322, F= 616.499)

Table 3: Experimental logP and physical parameters using (HF/STO-3G) method

Drugs Log P Zero point Energies Thermal Energies Enthalpies Free Energies E (Thermal) CV
    Hartree Hartree Hartree Hartree Kcal/Mol cal/mol-K
Abacavir 0.72 0.37352 0.39093 0.39187 0.32474 245.310 64.588
Acyclovir -1.76 0.27140 0.28555 0.28650 0.22735 179.186 50.910
Adenosine -1.46 0.28947 0.30476 0.30570 0.24538 191.239 57.578
Albuterol 0.02 0.38573 0.40321 0.40416 0.33831 253.020 63.880
Atropine 1.53 0.44721 0.46466 0.46561 0.39910 291.579 65.601
Azacitidine -1.99 0.26076 0.27533 0.27627 0.21763 172.772 53.965
Carbidopa -0.19 0.28136 0.29650 0.29744 0.23826 186.055 56.079
Cytarabine -2.3 0.27636 0.29067 0.29161 0.23330 182.396 53.560
Decitabine -1.93 0.25572 0.26946 0.27040 0.21401 169.088 50.524
Desvenlafaxine 2.26 0.46089 0.47835 0.47929 0.41456 300.166 66.313
Dobutamine 2.49 0.44697 0.46707 0.46802 0.39306 293.091 74.416
Dyphylline -1.12 0.29614 0.31262 0.31357 0.25072 196.172 58.583
Floxuridine -1.2 0.24764 0.26201 0.26296 0.20423 164.416 52.430
Ganciclovir -2.07 0.28219 0.29772 0.29866 0.23837 186.820 57.471
Homatropine 1.57 0.41303 0.42914 0.43009 0.36652 269.291 61.264
Hydroxychloroquine 3.54 0.49412 0.51629 0.51723 0.43768 323.974 80.054
Isoetharine 1.13 0.38678 0.40402 0.40496 0.34088 253.526 63.548
Isoproterenol 0.25 0.31845 0.33343 0.33437 0.27475 209.230 54.579
Isoxsuprine 2.58 0.44623 0.46602 0.46697 0.39408 292.434 73.455
Lamivudine -1.02 0.23432 0.24699 0.24793 0.19375 154.987 46.733
Levobunolol 2.86 0.47037 0.49011 0.49105 0.41912 307.546 73.209
Metipranolol 2.67 0.49681 0.52077 0.52171 0.44015 326.787 84.358
Midodrine -0.32 0.35155 0.36815 0.36909 0.30607 231.016 61.076
Pyridoxine -1.9 0.21706 0.22835 0.22930 0.17993 143.295 41.210
Risedronic acid -2.94 0.22605 0.24189 0.24283 0.18111 151.785 57.845
Ritodrin 1.61 0.41310 0.43153 0.43247 0.36262 270.787 69.127
Stavudine -0.91 0.25561 0.26980 0.27075 0.21246 169.302 50.613
Terbutaline 0.48 0.35190 0.36782 0.36876 0.30706 230.809 59.622
Trihexyphenidyl 5.06 0.57023 0.58908 0.59002 0.52086 369.651 72.354
Tropicamide 1.16 0.39934 0.41767 0.41862 0.34913 262.094 66.491
Vidarabine -1.46 0.28837 0.30410 0.30505 0.24273 190.828 58.486
Vorinostat 0.86 0.38499 0.40377 0.40471 0.33164 253.366 65.257
Zalcitabine -1.51 0.26585 0.27889 0.27983 0.22371 175.005 47.116
Zoledronic acid -2.28 0.20696 0.22332 0.22427 0.16305 140.138 59.832

Table 3: Continued …

Drugs Log P S HF Steric energy HOMO LUMO Mol Ref. Partition Coefficient
    cal/mol-K Hartree   (a.u.) (a.u.)    
Abacavir 0.72 141.283 -930.423 40.67 -0.22696 0.23407 7.8973 0.8057
Acyclovir -1.76 124.488 -797.035 15.51 -0.24613 0.25526 5.4966 -2.1354
Adenosine -1.46 126.954 -945.719 38.25 -0.26515 0.20221 6.2955 -2.1577
Albuterol 0.02 138.585 -773.769 -0.12 -0.24819 0.25947 6.7632 0.0614
Atropine 1.53 139.978 -924.621 32.90 -0.27591 0.25418 8.1462 1.2992
Azacitidine -1.99 123.426 -890.403 12.92 -0.28110 0.19989 5.3911 -2.1981
Carbidopa -0.19 124.55 -785.010 -25.99 -0.22639 0.27185 5.7762 -0.4448
Cytarabine -2.3 122.733 -874.641 15.34 -0.23293 0.23022 5.6022 -2.1951
Decitabine -1.93 118.694 -816.563 20.16 -0.25619 0.22355 5.2380 -1.9012
Desvenlafaxine 2.26 136.238 -814.521 17.43 -0.23635 0.27320 7.8241 2.6830
Dobutamine 2.49 157.761 -961.953 1.32 -0.22866 0.26586 8.8106 2.4330
Dyphylline -1.12 132.268 -892.562 26.39 -0.24286 0.20830 6.2242 -1.2861
Floxuridine -1.2 123.596 -917.797 22.05 -0.26909 0.21977 5.3090 -1.4048
Ganciclovir -2.07 126.899 -908.288 22.87 -0.23465 0.22866 6.0691 -2.5448
Homatropine 1.57 133.784 -886.045 27.30 -0.27023 0.26006 7.6824 1.4274
Hydroxychloroquine 3.54 167.434 -1378.101 24.86 -0.24030 0.19039 9.7216 4.1159
Isoetharine 1.13 134.875 -773.767 3.23 -0.23590 0.25814 6.7632 0.9914
Isoproterenol 0.25 125.495 -696.621 -7.38 -0.23569 0.26197 5.8356 0.1534
Isoxsuprine 2.58 153.415 -961.943 8.84 -0.24279 0.25910 8.8106 2.6150
Lamivudine -1.02 114.034 -1081.576 9.64 -0.25192 0.21027 5.6385 -1.4624
Levobunolol 2.86 151.39 -925.775 17.93 -0.24973 0.21819 8.3236 2.2623
Metipranolol 2.67 171.661 -1000.770 19.15 -0.24192 0.25486 8.6541 2.5454
Midodrine -0.32 132.648 -862.173 -5.84 -0.25357 0.24625 6.7038 -0.4248
Pyridoxine -1.9 103.915 -580.886 4.10 -0.26614 0.23528 4.3282 -0.3450
Risedronic acid -2.94 129.899 -1512.527 28.74 -0.27302 0.23132 5.7520 -2.6224
Ritodrin 1.61 147.012 -923.369 -1.74 -0.23984 0.26814 8.3468 1.6514
Stavudine -0.91 122.678 -783.873 7.40 -0.25559 0.24349 5.5788 -0.4875
Terbutaline 0.48 129.866 -735.199 0.30 -0.24374 0.26658 6.2994 0.4824
Trihexyphenidyl 5.06 145.56 -893.856 22.65 -0.26466 0.27298 9.3488 5.1510
Tropicamide 1.16 146.255 -902.671 4.58 -0.27912 0.24359 8.3290 1.1806
Vidarabine -1.46 131.163 -945.712 41.99 -0.25192 0.21998 6.2955 -2.1577
Vorinostat 0.86 153.782 -864.299 -8.32 -0.23188 0.26625 7.3609 0.9890
Zalcitabine -1.51 118.12 -726.977 15.58 -0.24261 0.22045 5.2960 -1.2469
Zoledronic acid -2.28 128.837 -1490.837 41.98 -0.26986 0.28835 5.1815 -3.0656
Figure 2: Correlation between the predicted and the practical of for 34 drugs using (HF/STO-3G)

Figure 2: Correlation between the predicted and the practical of for 34 drugs 

Click here to View Figure

Table (4) showed the predicted of the (34) drugs using the equation (4). The correlation between the experimental and the predicted values shows an excellent predicted for the drugs (R= 0.988) as shown in figure (2).

Table 4:  Experimental and predicted of logP using (HF/STO-3G) method

No.

Drugs

Log P (Practical)

Log P (Predicted)

Residuals

No.

Drugs

Log P (Practical)

Log P (Predicted)

Residuals

1

Abacavir

0.72

0.771

0.051

18

Isoproterenol

0.25

-0.026

-0.276

2

Acyclovi

-1.76

-1.792

-0.032

19

Isoxsuprine

2.58

2.423

-0.157

3

Adenosine

-1.46

-1.660

-0.200

20

Lamivudine

-1.02

-1.655

-0.635

4

Albuterol

0.02

0.430

0.410

21

Levobunolol

2.86

2.411

-0.449

5

Atropine

1.53

1.668

0.138

22

Metipranolol

2.67

2.752

0.082

6

Azacitidine

-1.99

-1.908

0.082

23

Midodrine

-0.32

-0.124

0.196

7

Carbidopa

-0.19

-0.681

-0.491

24

Pyridoxine

-1.9

-1.090

0.810

8

Cytarabine

-2.3

-1.780

0.520

25

Risedronic acid

-2.94

-2.458

0.482

9

Decitabine

-1.93

-1.757

0.173

26

Ritodrin

1.61

1.587

-0.023

10

Desvenlafaxine

2.26

2.629

0.369

27

Stavudine

-0.91

-0.914

-0.004

11

Dobutamine

2.49

2.305

-0.185

28

Terbutaline

0.48

0.433

-0.047

12

Dyphylline

-1.12

-1.090

0.030

29

Trihexyphenidyl

5.06

4.977

-0.083

13

Floxuridine

-1.2

-1.535

-0.335

30

Tropicamide

1.16

1.194

0.034

14

Ganciclovir

-2.07

-1.951

0.119

31

Vidarabine

-1.46

-1.681

-0.221

15

Homatropine

1.57

1.483

-0.087

32

Vorinostat

0.86

0.937

0.077

16

Hydroxychloroquine

3.54

3.682

0.142

33

Zalcitabine

-1.51

-1.283

0.227

17

Isoetharine

1.13

1.013

-0.117

34

Zoledronic acid

-2.28

-2.871

-0.591

Conclusion

The theoretical calculations plays a significant role in the description of the practical parameters like (log P). The results of the theoretical calculated at table 4 of drugs showed a perfect exploration for descriptors. These results have been showed an excellent correlation between the practical values with predicted as shown in fig 1 and fig 2. This mean that the physicochemical parameters is very useful to give us an information about our system and sometimes help to predicted the practical values before determine them. There is no difference in correlation coefficient about (R=0.988) for the two methods (AM1) and (HF/STO-3G). Also, no large difference in the standard error about (0.318) to (0.322). But the Fisher value about (632.5) in (AM1) method at equation (2) compare to (HF/STO-3G) about (616.499) at equation (4).

Conflict of Interest

There is no conflict of interest for all authors.

References 

  1. Ibrahim, A. A.; Abed, G. M., International Journal of Scientific & Engineering Research, January-2018, 9, Issue 1.
  2. Keserü, G. M.; Molnar L. J. Chem. Inf. Comput. Sci. 2001, 41, 120.
    CrossRef
  3. Dessalew, N.; Patel, D. S.; Bharatam, P. V. J. Mol. Graph. Model. 2007, 25, 885.
    CrossRef
  4. Ibrahim, A. A., Abdalrazaq, E. A., Ibrahim, M. A., Yahya, R.; Sulliman, E. A., Asian J. Chem., 2012, 24, No. 1.
  5. Maréchal, E.; Roy, S.; Lafanechère, L., Chemogenomics and Chemical Genetics, 2011, Springer-Verlag Berlin Heidelberg.
    CrossRef
  6. Hansch, C.; Leo, A. , The hydrophobic parameter: measurement and calculation, in: Exploring QSAR. Fundamentals and Applications in Chemistry and Biology, 1995, American Chemical Society, Washington, 97-124.
  7. Valverde, L. F. , Int.J. ChemTech Res., 2010 ,2(3).
  8. Dross K.; Mannhold R.; Rekker RF., Quant.Struct-Act. Relat ., 1992, 11,36-44.
    CrossRef
  9. KIpczyOska B.; Bojarski J.; Haber P.; Kaliszan R., 2000, Biomed Chromatogr., 14, 256-60.
    CrossRef
  10. Mannhold, R.; Dross K., Quant. Struct-Act Relat., 1996, 15, 403-9.
    CrossRef
  11. Jin-Can C., THEOCHEM, 2005, 756 167–172.
    CrossRef
  12. Vinícius, G. M.; Paula H. M.; Káthia M. H., J Mol Model, 2011, 17:2549–2558 .
    CrossRef
  13. Bikash, D.; Satya, P. V.; Biswanath, S.; Tarun, J., Internet Electronic Journal of Molecular Design 2003, 2, 128–136 .
  14. Kannan, S.; Syed M. A. P., International Journal of ChemTech Research, 2017,10(6): 770-783.
  15. Satish, K. L.; Rakesh; R. S., Anuj, G. A.; Prabhakar, Y. S., Int.J. ChemTech Res., 2010,2(2).
  16. Kihel, L.; Bourass, J.; Petit, J. Y.; Letourneux, Y.; Richomme, P.; Arzneimittel forschung,1996, 46 (11), 1040-1044.
  17. Margabandu, R.; Subramani, K., Int.J. ChemTech Res.2010,2(3).
  18. Esther, F.; Tibor, C., Zdenek, D.; Ivan, M., Journal of Chromatography B, 2001,753, 79–86.
  19. Adrian, B.; Ana C. R.; Marioara, B.; Titus, C.; Alexandru, T.; Balaban, Internet Electronic Journal of Molecular Design, 2006, 5, 237-246.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.