ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039
     FacebookTwitterLinkedinMendeley

Prospects of Nanobioremediation in Environmental Cleanup

Garima Pandey

Department of Applied Sciences, SRM Institute of Science and Technology, Tamil Nadu 603203, India.

Corresponding Author E-mail: garimapandey.pandey8@gmail.com

DOI : http://dx.doi.org/10.13005/ojc/340622

Article Publishing History
Article Received on : 04-11-2018
Article Accepted on : 10-12-2018
Article Published : 13 Dec 2018
Article Metrics
ABSTRACT:

This century is struggling with the issue of environment friendly management of the pollutants  which are contaminating the environment. One of an ecofriendly and economically feasible method is the bioremediation of pollutants using bio nanoparticles. Nanobioremediation is a highly studied and explored area of remediation of contaminants using nanotechnology. Nanoparticles used for bioremediation are biologically synthesized from plant extracts, fungi and bacteria. These biogenic nanoparticles when applied to environmental contaminants had shown very promising results. Based on the various studies the bioremediation of pollutants using biosynthetic nanoparticles is emerging as a very promising and sustainable method of environment cleanup. This review focuses on the synthesis of bio-nanoparticles and their use in cleaning the environment.

KEYWORDS:

Biogenic; Eco-friendly; Nano-bioremediation; Nano-particles; Sustainable

Download this article as: 

Copy the following to cite this article:

Pandey G. Prospects of Nanobioremediation in Environmental Cleanup. Orient J Chem 2018;34(6).


Copy the following to cite this URL:

Pandey G. Prospects of Nanobioremediation in Environmental Cleanup. Orient J Chem 2018;34(6). Available from: http://www.orientjchem.org/?p=53840


Introduction

Some nanoparticles are found to produce inhibitory effect on seed germination and root growth; some of them are used for cleanup of Uranium contaminated waste water. Green chemistry is the field of science reflecting the application of sustainable principles for the processes, reactions and procedures for synthesizing chemicals.1 It is an environment friendly method of producing materials which are less harmful because of the use of ecofriendly reactants. Now when the principle of green chemistry is applied for the production of Nanoparticles it is been found very promising. This green approach for the synthesis of nanomaterials2 is found to reduce the critical hazards of contaminants and benefit environmental and medicine segments of bionanotechnology in future. Green nanotechnology is the combination of Nanotechnology and Green chemistry reflecting the goal of creating ecofriendly nanomaterials and finding their applications for reducing environment and human health hazards. The enormous industrial expansion in the last century has changed the course of technological development and has changed the fate of human existence too. The innovation and expansion in the field of science and technology contribute directly or indirectly to the mammoth increase in waste and toxic substances in the environment. The neglectance of the effect of improper disposal and dissemination of the materials in the environment had led to a toll on environmental health and because of this negligence several serious issues related to health have been reported. To protect the environment it is necessary maintain the environmental sustainability which involves conservation, protection and restoration of the natural environment maintaining the long term environmental quality. Thus, the efforts and research to grow technologies for the remediation of contaminated sites as well as to reduce the cost of the decontamination processes is increasingly encouraged. Several in-situ and ex-situ technologies are being deployed for decontamination. For in-situ treatment, soils are not being excavated and for ex-situ treatment first the contaminated soil is removed and treatment is performed off-site under controlled conditions.2 Among the current methods of in-situ remediation, the use of nanomaterials has been highly appreciated and encouraged as a cost-effective and sustainable method.3-5

Green Synthesis of Nanoparticles

Nanoparticles from Phytochemicals

The unique catalytic, magnetic, electronic, optical and mechanical properties of Nanoparticles are attracting scholars to find new routes for their synthesis. Green synthesis is an innovative method of synthesizing nanoparticles6 keeping in mind the environmental sustainability and environmental hazards. Out of all the practiced methods of synthesizing nanoparticles the green route is most advantageous. It is because of its cost effectiveness, eco-friendly approach, controlled toxicity and rapid speed of reaction etc. Nanoparticles synthesized by green route have a well defined structural, physical and chemical properties.7,8 There are two methods for synthesizing nanoparticles ,the chemical synthesis and the green synthesis.9-10 Chemical Synthesis of nanoparticles uses chemical reduction using chemical compounds such as citrates, ascorbates, borohydrates of sodium11-13 etc. Chemical synthesis of nanoparticles uses toxic solvents,14-15 extreme physical conditions like high temperature, pressure,16-18 energy is required which all is not ecofriendly and poses serious threats to environmental balance.19-21

Green synthesis of nanoparticles uses green reducing agents22-25 which are obtained from phytochemical26 extracts of different plants such as extracts from plant leaves , juices from various medicinal plants etc. Green synthesis involves mixing of a fixed ratio of plant extract and metal ions providing them the adequate conditions and it has been reported that even at conditions as mild as room temperature these reactions show positive indications conforming the formation of nanoparticles.154,155

Once synthesized, the nanoparticles are characterized by UV, XRD and FTIR data analysis.27-32 Nanoparticles are categorized in two groups – organic and inorganic nanoparticles. Organic Nanoparticles are carbon made nanoparticles, mostly fullerenes whereas inorganic nanoparticles include noble metal nanoparticles eg. Gold and silver,semiconductor nanoparticles,33-38 eg. Titaniumdioxide, zinc oxide etc. Ruffin – castigline classified nanoparticles as natural, incidental and engineered nanoparticles , based on their method of origin. All the metal Nanoparticles are kept under the category of engineered nanoparticles because all of are being synthesized in laboratories eg. Nanogold, ZnO, TiO2 ,Quantum dots etc.39-42

The antimicrobial activity of SilverNPs and their use in batteries, optical receptors has made the scientists to biologically synthesize them. Ag NP can be biosynthesized from the phytoextracts of various plants like Sinapis arvensis , Lantana camara , Trigonella foenumgraecum , Artemisia nilagirica, Nerium oleander, Pithophora oedogonia83-110 etc. Gold NPs were synthesized from the plant extracts of Abelmoschus esculentus,Angelica, Hypericum, Eucalyptus , Mentha,, Zingiber officinale  etc.,119-143 Iron NPs are being synthesize using the phytoetracts obtained from the plants such as Aloe vera, Rosemarinus officinalis, Green tea, Dodonaea viscose144-152 etc. Likewise CopperNPs are synthesized from leaf extracts of Punica granatum , Ocimum tenuiflorum, Nerium oleander,  Ricinus communis,173-185],  ZincNPs, and PalladiumNPs have been biologically synthesized using plant extracts from tea and coffee , Cinnamomum camphora  ,Melia azedarach , Delonix regia and Evolvulus alsinoides etc.,158-166195-212

Nanoparticles from Microbes

Microorganisms have the potential to reduce metal ions leading to the synthesis of nanoscale materials. Microorganisms secrete extracellular enzymes which are being used for the synthesis of relatively pure nanoparticles.111-118 Bacteria have special affinity for metals and this unique metal binding property makes them useful for nanobioremediation. Apart from bacteria, fungi and yeast are also being used for biosynthesis of nanoparticles.129-139 Whenever it is required to synthesize large amounts of nanoparticles fungi are being used because of their characteristic property of larger volumes of proteins. Microbiological methods of synthesizing nanoparticles are comparatively slower than the methods using plant extracts140-141 table-1. In biosgenic production of metal nanoparticles by a fungus, some reducing enzymes with catalytic effects are produced which reduce salts to their corresponding metallic solid nanoparticles. This catalytic effect is a major drawback of microbial synthesis of nanoparticles and needs to get rectified for the broader application of this method.153-157,167-172 Microbes have some advantages over other biological methods like these are easy to handle, have a high growth rate, low cost requirement, easy culture methods, less environmental hazards and these qualities of microbes make them useful for biosynthesis.186-194 Yeast threads are also being use for the synthesis of nanoparticles. Many fungi are being used for the synthesis of nanoparticlesFungi are better at producing a larger amount of nanoparticles as compared to bacteria because of the secreation of a large amount of protein producing higher amount of nanoparticles.200-205,213-215 Using fungi for synthesizing nanoparticles is an ecofriendly route of nanoparticle synthesis.

Table 1: Biosynthesis of nanoparticles from plants and microbes.

Name  of NP Name of bio specie with reference
Plant microorganism
Siver NPs Sinapis arvensis83 Staphylococcus aureus111
Lantana camara84 Brevibacterium casei112
Trigonella foenumgraecum85 Streptomyces sp113
Artemisia nilagirica86 Streptomyces naganishii 114
Butea monosperma87 Actinomycete, Nocardiopsis sp. MBRC-1115
Nerium oleander88 Trichoderma reesei116
Pithophora oedogonia89 Cladosporium cladosporiodes117
Oryza  sativa90 Neurospora crassa 118
Cydonia oblong91
Helianthus  annus92
Ixora coccinea93
  Saccharum  officinarum94
Macrotyloma uniflorum95
 Sorghum  bicolour96
 Zea  mays97
Allium sativum98
Basella  alba99
  Aloe  vera100
Capsicum annuum var. aviculare101
 Magnolia  kobus102
  Callicarpa maingayi103
Hovenia dulcis104
Medicago  sativa (Alfalfa)105
Ficus benghalensis106
  Cinamomum  camphora , Pinus eldarica107
  Geranium  sp.108
Sesbania  drummondii109
Semen cassia110
Gold NPs Abelmoschus esculentus119 Rhodococcus sp.129
Angelica, Hypericum, Hamamelis120 Klebsiella pneumonia130
Eucalyptus ,Ocimum, Mentha121 Rhodopseudomonas capsulate131
Stevia rebaudiana122 Rhodococcus sp., Streptomyces sp.132
Zingiber officinale123 Streptomyces viridogens133
Terminalia chebula124,125 Nocardia farcinica134
Morinda citrifolia L.126 Thermomonospora sp135
Diopyros kaki127 Cylindrocladium floridanum136,137
Anacardium occidentale128 Aspergillus oryzae138
Jatropha waste142 Neurospora crassa139
Ginkgo Biloba143 Penicillium brevicompactum140
 Aspergillus clavatus141
Iron NPs  Aloe vera144 Shewanella oneidensis153
Eucalyptus tereticornis145 Klebsiella oxytoca154
Rosemarinus officinalis146 C. globosum155
Green tea147 E. coli156
Dodonaea viscose148 Plerotus Sp.157
Sorghum bran149
Caricaya papaya150
Sargassum muticum151
Azadirachta indica152
ZincNPs Aloe vera158,159 Lactobacillus167,168
Limonia acidissima160 Streptomyces sp.169,170
Nyctanthes arbor-tristis161 Candida albicans171,172
Pongamia pinnata162
Parthenium hysterophorus163
Plectranthus amboinicus164
Trifolium pretense165
Ixora coccinea166
Copper NPs Punica granatum173 Shewanella oneidensis186
Ocimum tenuiflorum174 Pseudomonas stutzeri187
Nerium oleander175 Pseudomonas sp., Serratia sp188
Ricinus communis176 Streptomyces sp189
Ocimum  sanctum177 Fusarium oxysporum190
Gloriosa superba178 Hypocrea lixii191
Tabernaemontana divaricate179 Penicilium citrinum192
Calotropis gigantean180 Sterium hirsutum193
 Ficus religiosa181 Penicillium aurantiogriseum, Penicillium citrinum, Penicillium waksmanii194
Carica papaya182
Rubus glaucus Benth183
Green tea and eucalyptus184,185
Titaniun Moringa oleifera195 Bacillus subtilis200
Nyctanthes Arbor-Tristis196 Bacillus amyloliquefaciens201
Trigonella foenum-graecum197,198 Aeromonas hydrophila202
Solanum trilobatum199 Aspergillus tubingensis203
Fusarium oxysporum204,205
Palladium NPs tea and coffee206 Desulfovibrio desulfuricans213,214
Origanum vulgare207 S. oneidensis215
Cinnamomum camphora208
Melia azedarach209
Delonix regia210
Evolvulus alsinoides211,212

 

Nano-Remediation of the Contaminated Sites

The industrial boom and population growth has introduced a wide range of pollutants such as hazardous heavy metals, various harmful inorganic compounds, organic pollutants and many other complex compounds  in ground surface and ground water system.43,44 It is vital to remove these toxic substances from the environment. Nanotechnology has been reported to play important role in addressing different effective and innovative solutions to many of the diverse environmental challenges.45,46 Nanoremediation also can help in lowering down the level of pollutants in the environment.47,48 Three major applications of nanoremediation include detection of pollution using nanosensors,49,50 prevention of pollution,51,52 purification and remediation of contamination.53,54 In the past two decades due to the efficiency, cost effectiveness and eco-friendly nature55,56 the use of nano size particles has largely been encouraged as an alternative to existing treatment materials .Metals such as Iron, Palladium, Silver, Gold,  in their elemental or zerovalent state in nanoscale form , because of their surface area charge crystallographic behavior and size specifications have shown promising results in the treatment of polluted sites contaminated with various toxic substances.57-59 Iron nanoparticles are the first ones to be considered as a tool for environmental clean-up.60-62 Environmental clean-up methods for the remediation of contaminated land or groundwater are using Iron either as a sorbent for adsorbing contaminants by injecting it into subsurface environments at the contaminated sites or as an electron donor to reduce contaminants into a less toxic form.63-65 Few methods of decontamination use both the sorption and electron donor nature of iron nanoparticles.66-67 Apart from IronNPs, ZincNPs, GoldNPs SilverNPs,CopperNPs are also ben extensively studied for their role as decontaminant,68,79 Zinc nanoparticles as photocatalyst have the property to degrade organic dyes , phenolic and medicinal compounds.70-72  Silver, Copper and Gold nanoparticles have shown promising results in the degradation of organic dyes into less toxic compounds.73-74

Challenges with Nanoparticles

Although nanoparticles have shown promising results in treating contaminated sites, there are few problems associated to their loss of reactivity with time , transportation and their  effect on microorganisms.75,76 Iron nanoparticles show a loss in their reactivity level after a certain period , show a blocking effect in the soil by clogging the pores of soil and restricting the passage of fluids, showed that  stabilizers, such as lactate, can be used to  increases the mobility of iron nanoparticle in turn felicitating  their better transport in soil.77,78 Another major issue with nanoparticles is their toxic effect on the growth of the microbial communities.Various studies under controlled conditions have been performed on the effect of nanoparticles on microbes and the results are found to be conflicting.79 Some of the  studies have shown inhibitory effects on microorganisms  like Staphylococcus aureus and Escherichia coli.80-82 Few other studies, have shown stimulating  effect of nanoparticles as electron donors  on microorganisms such as bacteria and  methanogens.215,216 Soil microorganisms are extremely important to the natural cycle of nutrients in the environment and they can also naturally degrade the organic contaminants or reduce and immobilize heavy metals.Thus, the drastic reduction of the microbial population can result in the weakening of the soil’s resistence to the contamination.217,218 The toxic effect of nanoiron can disrupt the cell membrane by producing  reactive oxygen compounds causing death of microbial cell. Nanoiron compounds can also hinder absorption of nutrients through the cell membrane in microbes inhibiting their growth.219,220 Iron nanocompounds have not shown to have any effect on the growth of fungul colonies.221,222 It has been studied that the txoic effect of nanoparticles can be minimized by coating them with some organic polymers. Studies also have showed that microorganisms sometimes produce certain  specfic enzymes and polysaccharides to resist and counter the toxicity of nanoparticle.223,224

Nano-Bioremediation

While deciding the best suitable method for the remediation of contaminated sites various aspects like efficiency, cost effectivity, complexity, hazards, availability of resources, time consumed are carefully analysed and evaluated. It has been observed that using a single technology for the remediation of the contaminants may not be that appropriate for selection . Therefore it is essential to combine applications of multiple technologies to overcome the issues related to the application of a single method.225,226 Nanobioremediation is one such method using the applications of physiochemical and biological methods and currently it is being highly studied in various contaminated sites. Nanobioremediation technique first uses nanomaterials to break the contaminants to a level favourable to biodegradation and then leads to biodegradation of the contaminants. For the nanobioremediation, cleanup of the contaminated water and land sites is being performed by the nanoparticles which are bioligicaly synthesized from phytoextracts or microorganisms. Zero-valent  ironNPs  are  promising and  imperative  means  of   nanoremediation  and  have  shown to effectively  treat  acidic-water  contaminated  with heavy-metals by adsorbing the heavy-metal pollutants on their surface.227,228 CNTs have also been proven to be extremely effectual in the remediation of contaminated water owing to their exceptional affnity and adsorption-characteristics towards the pollutant molecules.229,230 The high thermal and chemical stability of CNTs makes them an important replacement to activated-carbon for the removal of different organic and inorganic contaminations like lead, chromium and zinc.,231-233 Even though nanoremediation is effective in    mine-water treatment, still there are several issues related to their toxic effects that need to be sorted 39. Several nano-applications for eco-remediation are quickly growing from pilot scale to full scale accomplishment in treating environmentally demanding chlorinated sites. NanoscaleTiO2, CNTs, dendrimers, swellable organically-modified silica (SOMS) and metallo-porphyrinogens and potential are nanoproducts for remediation of pollutants in ex-situ or in-situ process.234-236 TiO2 nanoparticles have the potential to remediate a range of chemical fertilizers, herbicides, insecticides and pesticides through the process of photo-catalysis and are tested for ex-situ management of infected ground-water resources as well.,237-240 Biologically synthesized NPs of iron, copper, titanium metals in combination of a metal-catalyst such as gold, Pt, Pd and nickel, increase the reaction rate of the redox-reaction.

Pd NPs have the property of catalyzing the reduction process of trichloroethene to ethane with no production of intermediary byproduct, as vinyl chloride. A parallel metal-glass fusion material, Palladium-Osorb is successfully tested and used for ex-situ remediation of chlorinated VOCs.241-244 Silica NPs help in remediation of lead,245-249 zinc NPs for CS2 from air and nanocrystalline hydroxyl- apatite for removing lead and cadmium, zerovalent nanoiron, CNTs, fullerenes, TiO2 and ZnO NPs, and bimetallic nano- metals for remediation of DDT, carbamates, heavy metals like chromium, lead, arsenic and cadmium from soil.250,251 Biologically synthesized Iron NPs and Iron-Pd NPs have shown wider application in treatment of dyes, hydrocarbons, 2,3,7,8-tetrachlorodibenzo-p dioxin, pesticides,TCE  PCB and Lindane etc using bacterial metabolism.252-254

Conclusion

To conclude, it is very much necessary for mankind to use the environment sensibly and sustainably. For that, remediation of contaminated sites is also an integral part of this sensibility and is very much necessary. Although nanobioremediation is an interesting and feasible method for remediation using applications of nanotechnology, the safety concerns and health risks associated with their large scale production and usage are not fully assessed and managed. Going by the promising results in degradation of pollutants by biologically synthesized nanoparticles it has become necessary for the researchers to find innovative methods for their synthesis and to further analyze their   toxicity and inhibitory effects on environment and the microbial population are also recommended.

Acknowledgements

I would like to show gratitude to the Deputy Registrar and the Dean of SRM-IST, NCR Campus, my HOD and colleagues who provided insights, expertise and support that greatly assisted the research,

References

  1. Beach, E. S., Cui, Z. and Anastas, P. T., Energy Environ. Sci., 2, 1038,(2009).
    CrossRef
  2. Tyagi, S., J.of Pharmaceutics and Nanotechnology, 4,102,(2016).
  3. Kessler, R., Environ Health Perspect., 119, A120, (2011).
  4. Hutchison, J.E., ACS Sustainable Chem. Eng. 4 , 5907, (2016).
    CrossRef
  5. Roco, M., Springer Netherlands, 1,1, (2011).
  6. Fleischer, T. and Grunwald, A., J. Clean. Prod., 16, 889,( 2008).
    CrossRef
  7. Koo, O.M., Rubinstein, I. and Onyuksel, H., Nanomedicine, 1, 193,( 2005).
    CrossRef
  8. Alaqad, K . and Saleh, T.A. , J Environ Anal Toxicol,6,384, (2016).
    CrossRef
  9. Sengul, H., Theis, T. L. and Ghosh, S., J. Ind. Ecol., 12, 329,( 2008).
    CrossRef
  10. Saleh, T. A., Bioenergetics, 5,226, (2016); doi:10.4172/2167-
    CrossRef
  11. Tsuzuki, T., Int. J. of Nanotech., 6,567,(2009).
    CrossRef
  12. Liu, Z., Wang, R., Kan, F. and Jiang, F., Asian J. of Chemistry ,26,655,(2014).
    CrossRef
  13. Makarov,V.V., Love,J., Sinitsyna,O.V., Makarova,S.S. and Yaminsky,I.V., Acta naturae, 6, 35,(2014).
  14. Ibrahim, H.M.M., J. Radiat. Res. Appl. Sci., 8, 265,(2015).
    CrossRef
  15. Verma, A. and Mehata, M. S., J. Radiat Res Appl Sci., 9,109, (2016).
    CrossRef
  16. Sameh, S. A., J. Nanomedine Biotherapeutic Discov., 2, e110, (2012).
  17. Valter, B. and Claudio, N. J Nanomed Nanotechnol,5:230.0, (2014).
  18. Kepley, C., J Nanomed Nanotechnol., 3, e111, (2012).
    CrossRef
  19. Annamalai, J. and Nallamuthu, T., Applied Nanosc.,6, 259, (2016).
    CrossRef
  20. Jibowu, T., J. Nanomed Nanotechnol.,7, 379, (2016).
  21. Arun, G., Eyini, M. and Gunasekaran, P., Biotechnol Bioprocess Eng., 19,1083,(2014).
    CrossRef
  22. Salehi, S., Shandiz, S. A. S. and Ghanbar, F., Int J Nanomedicine,11,1835, (2016).
  23. Le, X. and Poinern, G.E.J., Subramaniam, S. and Fawcett, D., Open J. Biomed. Mater. Res., 2, 11, (2015).
  24. Demir, E., Hereditary Genet., 4,151, (2015).
  25. Nikalje, A. P., Med chem., 5,081, (2015).
  26. Boisselier, E. and Astruc, D., Chem Soc. Rev., 38, 1759,(2009).
    CrossRef
  27. Ghashghaei, S. and Emtiazi, G., J Nanomater Mol Nanotechnol., 2,5, (2013).
    CrossRef
  28. Hartung, G.A. and Mansoori, G.A., J Nanomater Mol Nanotechnol, 2,3, (2013).
  29. Murugan, Kumara, A., K. and Sundaram, S.,World J. Pharm. pharm. Sci., 3,1385,(2014).
  30. Masala, O. and Seshadri, R., Annu Rev MaterRes., 34,41, (2004).
    CrossRef
  31. Castiglione, M.R. and Cremonini, R., Caryologia, 62, 161, (2009).
    CrossRef
  32. Densica,U.V., Gamulin, O., Tonej,A., Ivanda,M., White,C.W., Sonder,E. and Zuhr,R.A.., Mat. Sci. Engg. , 15, 105, (2011).
  33. Shahwan,T., Sirriah,S.A., Nairat,M., Boyaci, E., Eroglu, A.E., Scott T.B and Hallam, K.R., Chem Eng J,172,258,(2011).
    CrossRef
  34. Daniel, S.K.,Vinothini, G., Subramanian, N., Nehru, K. and Sivakumar, M., J Nanopart Res., 15,1,(2013).
  35. Iravani, S., Int. Scholarly Res. Notices, 359316, 18, (2014);  http://dx.doi.org/10.1155/2014/359316.
    CrossRef
  36. Mohanpuria, P., Rana, K.N. and Yadav, S.K., J. Nanopart. Res. 10, 507- 517, (2008).
    CrossRef
  37. Oksanen T., Pere J., Paavilainen L., Buchert and J. Viikari L., J. Biotechnol.,78 ,39, (2000).
    CrossRef
  38. Vahabi, K., Mansoori, G.L. and Karimi, S.S., Insci. J.,1,65,(2011).
    CrossRef
  39. Saxena, J., Sharma, M.M., Gupta, S. and Singh, A., World J. Pharmacy Pharmaceutical sci.,3,1586,(2014).
  40. Cundy, A. B., Hopkinson, L. and Whitby, R.L.D., Sci. Total Environ., 400, 42e51,( 2008).
  41. Berge, N. D. and Ramsburg, C.A., J. Contam. Hydrol.,118, 105e116,( 2010).
  42. El-Kemary, M., El-Shamy, H. and El-Mehasseb I, J. Lumin., 130,2327,(2010).
    CrossRef
  43. Tosco, T., Papini, M.P., Viggi,C. C. and Sethi, R., J. Clean. Prod., 1, 10e21(2014).
  44. Santornchot, P., Satapanajaru, T. and Comfort,S.D., World Acad. Sci. Eng. Technol., 48,625, (2010).
  45. Yan,W., Lien, H.L., Koel,B.E. and Zhang,W.X., Environ. Sci. Process. Impacts, 15, 63e77, (2013).
  46. Reddy,K.R., Khodadoust, A.P. and Darko-Kagya,K., J. Environ. Eng., 140, 04014042. ASCE, (2014).
  47. Reddy, K., Darnault, C. and K. Darko-Kagya, J. Geotechnical Geoenvironmental Eng., 140, 04013013,( 2014).
    CrossRef
  48. Nel, A., Xia,T., Madler, L. and Li, N., Science, 311, 622e627,(2006).
  49. Reardon, E,J., Fagan, R., Vogan, J.L. and Przepiora, A., Environ. Sci. Technol., 42, 2420e2425,(2008).
  50. Grieger, K.D., Fjordboge, A., Hartmann, N.B., Eriksson, E., Bjerg, P.L. and Baun, A., J. Contam. Hydrol., 118, 165e183, (2010).
  51. Gordon, T. and Margel, S., Colloids Surf. Physicochem Eng. Asp., 374, 1e8,(2011).
  52. Li, H. and Jiang, G., Ecotoxicol. Environ. Saf., 72, 684e692,(2009).
  53. Xiu, Z. and Alvarez, P.J.J., Bioresour. Technol., 101, 1141e1146, (2010).
  54. Kirschling, T.L. and Tilton, R.D., Environ. Sci. Technol., 44, 3474e3480,(2010).
  55. Bokare, V., Murugesan, K., Kim, J.H., Kim, E.J. and Chang, Y.S., Sci. Total Environ., 435e436, 563e566,(2012).
  56. Lefevre, E., Bossa, N., Wiesner, M. and Gunsch, C., Sci. Total Environ.,15, 889e901, (2016).
  57. Chen, P.J., Su,C.H., Tseng, C.Y., Tan, S.W. and Cheng, C.H., Mar. Pollut. Bull.,63, 339e346,(2011).
  58. Diao, M. and Yao, M., Water Res.,43, 5243e5251,( 2009).
  59. Shah,V. and Seal,S., J. Hazard Mater ,178, 1141e1145,(2010).
  60. Khan,S. S., Kumar,E.B., Mukherjee,A. and Chandrasekaran,N., J. Basic Microbiol.,51, 183e190,(2011).
  61. Wu, D., Shen, Y., Ding, A., Mahmood, Q., Liu, S. and Tu, Q., J. Hazard. Mater, 262, 649e655, (2013).
  62. Kim,Y.M., Murugesan,K., Chang,Y.Y., Kim,E.J. and Chang,Y.S., J. Chem. Technol. Biotechnol., 87, 216e224,( 2011).
  63. Le, T.T., Nguyen, K.H., Jeon, J.R., Francis, A.J. and Chang, Y.S., J. Hazard. Mater.,287, 335e341,(2015).
  64. Nemecek, J., Pokorny, P., Lhotsky, O., Knytl, V., Najmanova, P., Steinova, J., Cerník, M., Filipova, A., Filip, J. and Cajthaml, T., Sci. Total Environ., 563e564, 822e834, (2016).
  65. Dinesh, R., Anandaraj, M., Srinivasan, V. and Hamza, S., Geoderma, 173e174, 19e27, (2012).
  66. Koenig, J.C., Boparai, H.K., Lee, M.J., O’Carroll, D.M., Barnes, R.J. and Manefield, M.J., J. Hazard. Mater.,308, 106e112,(2016).
  67. Bokare, V., Murugesan, K., Kim,Y.-M., Jeon, J.-R., Kim, E.-J. and Chang, Y.S., Bioresour. Technol., 111, 6354e6360, (2010).
  68. Singh, R., Manickam, N., Mudiam, M.K. R., Murthy, R. C. and Misra, V., J. Hazard. Mater., 35, 258e259, (2013).
  69. Padma, P.N., Banu, S.T., and Kumari, S.C., Annual Research & Review in Biology, 23. 1, (2018);doi:10.9734/ARRB/2018/38894.
    CrossRef
  70. Minal, S. and Prakash, S., Int. J. of Adv. Eng. and Nano Tech. (TM), 3,2347, (2018).
  71. Petla, R.K., Vivekanandhan, S., Misra, M., Mohanty, A.K., and Satyanarayana, N., J Biom. R Nanobio., 3, 14, (2012).
  72. Nadagouda, M.N., and Varma, R.S., Green Chemistry, 10,859, (2008).
    CrossRef
  73. Haritha, E., Roopan, S.M., Madhavi, G., Elango, G., Al-Dhabi, N.A., and Arasu, M.V., J.of Cluster Science,28, 1225,(2017).
    CrossRef
  74. Seyedi, N., Saidi, K., and Sheibani, H.,Catalysis Letters, 148, 277, (2018).
    CrossRef
  75. Bhakyaraj, K., Kumaraguru, S., Gopinath, K., Sabitha, V., Kaleeswarran, P.R., Karthika, V., Sudha, A., Muthukumaran, U., Jayakumar, K., Mohan, S., and Arumugam, A., J.of Cluster Science, 28, 463,(2017).
    CrossRef
  76. Li, G., Li, Y., Wang, Z. and Liu, H., Materials Chemistry and Physics, 187, 133,(2017); https://doi.org/10.1016/j.matchemphys.2016.11.057
    CrossRef
  77. Soni, N. and Prakash, S., Parasitology research, 110,175,(2012).
    CrossRef
  78. Soni, N. and Prakash, S.,Rep Parasitol, 2,1,(2012).
  79. Soni, N. and Prakash, S., Parasitology research, 111,2091, (2012).
    CrossRef
  80. Soni, N. and Prakash, S.,Annals of microbiology, 64, 1099, (2014).
    CrossRef
  81. Soni, N. and Prakash, S., Parasitology research, 114, 1023, (2015).
    CrossRef
  82. Morrison, S.J., Metzler, D.R. and Dwyer, B.P., J. Contam. Hydrol., 56, 99,(2002).
    CrossRef
  83. Lam, S.J., Wong, E.H.H., Boyer, C. and Qiao, G.G., Progress in Polymer Science, 76,40,(2018); https://doi.org/10.1016/j.progpolymsci.2017.07.007
    CrossRef
  84. Dimitrov, D., Colloids Surf. A., 8, 282, (2006).
  85. Kavitha, K.S.,  Baker, S., Rakshith, D., Kavitha, H.U., Rao, H.C.Y., Harini, B.P. and Satish, S., Int. Res. J. Bio. Sci., 2, 66, (2013).
  86. Rasheed, T., Bilal, M., Iqbal, H.M.N. and Li, C., Colloids Surf B Biointerfaces, 158, 408,(2017);doi: 10.1016/j.colsurfb.2017.07.020.
    CrossRef
  87. Kumar, R.R., Priyadharsani, K.P. and Thamaraiselvi, K., J Nanopart Res., 14(5), 1,(2012).
  88. Singh, R.P., Magesh, S. and Rakkiyappan, C., Int J Bioeng Sci Technol., 2, 64,(2011).
  89. Vijayakumar, M., Priya, K., Nancy, F.T., Noorlidah, A. and Ahmed, A.B.A., Ind Crop Prod., 41,235, (2013).
    CrossRef
  90. Ramya, S., Neethirajan, K., and Jayakumararaj, R., J. Pharm. Res., 5, 4548, (2012).
  91. Zia, F., Ghafoor, N., Iqbal, M. and Mehboob, S.,  Appl. Nanosci., 6,1023, (2016).
    CrossRef
  92. Mubayi, A., Chatterji, S., Rai, P.M., and Watal, G., Adv. Mat. Lett., 3, 519, (2012).
    CrossRef
  93. Karuppiah, M. and Rajmohan, R., Materials Letters, 97,141,(2013).
    CrossRef
  94. Bououdina, M.S., Rashdan, J.L., Bobet, Ichiyanagi, Y., J. Nanomater., 240, 8501, (2013).
  95. Vidhu, V.K., Aromal, S.A. and Philip, D., Spectrochim. Acta Part A: Mol. and Biomol.Spect., 83,392,(2011).
    CrossRef
  96. Cheirmadurai, K., Biswas, S., Murali, R. and Thanikaivelan, P., RSC Adv.,4, 19507, (2014); doi:10.1039/C4RA01414F
    CrossRef
  97. Mittal, A.K., Chisti, Y., and Banerjee, U.C., Biotechnol. Adv., 31,346,(2013).
    CrossRef
  98. Rajoriya, P., Misra, P., Shukla, P.K., and Ramteke, P.W., Curr. Sci., 111,1364,(2016).
    CrossRef
  99. Jayaseelan, C., Ramkumar, R. and Rahuman, A.A., Indust. Crops and Prod., 45, 423,(2013).
    CrossRef
  100. Saeb, A.T. M., Alshammari, A. S., Al-Brahim, H., and Al-Rubeaan, K A., The Scientific World J. ,9, (2014); ArticleID704708.
  101. Mendoza-Res´endez, R., Nu˜nez, N.O., Barriga-Castro, E.D., and Luna, C., RSC Advances, 3, 20765,(2013).
    CrossRef
  102. Vadlapudi, V., Kaladhar, D.S.V.G.K., Behara, M., Sujatha B. and Naidu, G.K., Orient. J. Chem., 29, 1589, (2013).
    CrossRef
  103. Shameli, K., Ahmad, M.B., Jaffar Al-Mulla, E. A., Ibrahim, N.A., Shabanzadeh, P., Rustaiyan, A., Abdollahi,Y., Bagheri, S., Abdolmohammadi, S., Usman, M.S., Zidan, M., Molecules, 17,8506,(2012).
    CrossRef
  104. Basavegowda, N., Idhayadhulla, A., and Lee,Y. R., Mat. Lett.,129,28,(2014).
    CrossRef
  105. Mizuhara, T., Moyano, D.F, and  Rotello, V.M., Nano Today, 11,31,(2016); https://doi.org/10.1016/j.nantod.2015.11.002.
    CrossRef
  106. Saxena, A., Tripathi, R. M., Zafar, F., and P. Singh, Mat.Lett.,67,91,(2012).
    CrossRef
  107. Iravani, S., Zolfaghari, B., Biomed. Res. Int., 2013, Article ID 639725,(2013);doi: 10.1155/2013/639725.
    CrossRef
  108. Patra, S., Mukherjee, S., Barui, A.K., Ganguly, A., Sreedhar, B. and Patra, C.R., Mater. Sci. Eng. C, 53, 298,(2015).
    CrossRef
  109. Siddiqui, M.H., Al-Whaibi, M.H., Firoz, M., and. Al-Khaishany, M.Y., Role of Nanoparticles in Plants in Nanotechnology and Plant Sciences, © Springer International Publishing Switzerland, (2015).
  110. Beyene, H.D., Werkneh, A.A., Bezabh, H.K., Ambaye, T.G., Sustainable Materials and Technologies, 13,18,(2017).
  111. Kumar, D., Karthik, L., Kumar, G. and Roa, K.B. Pharmacology online, 3, 31100, (2011).
  112. Tripathi, V., Fraceto, L.F., and Abhilas, P.C., Ecological Engineering, 82, 330, (2015).
    CrossRef
  113. Alani, F., Moo-Young, M., and Anderson, W., World J Microbiol Biotechnol., 28,1081,(2012).
    CrossRef
  114. Durán, N., Marcato, P.D., Durán, M., Yadav, A., Gade, A. and Rai, M., Appl. Microbiol. Biotechnol., 90, 1609,(2011).
    CrossRef
  115. Krishnaswamy, K., Vali, H. and Orsat, V.J., J. Food Eng.,142, 210,(2014).
    CrossRef
  116. Nanda, A. and Saravanan, M., Nanomed Nanotechnol Biol Med., 5,452,(2009).
    CrossRef
  117. Kalishwaralal, K., Deepak, V., Pandian, S.R.K., Kottaisamy, M., Mani Kanth, S., Kartikeyan, B. and Gurunathan, S., Colloids Surf B, 77,257,(2010).
    CrossRef
  118. Calderon, B. and Fullana, A., A. Water Res., 83, 1, (2015).
    CrossRef
  119. Chaturvedi, V. and Verma, P., Bioresour Bioprocess, 2,18, (2015).
    CrossRef
  120. Subbaiya, R., Shiyamala, M., Revathi, K., Pushpalatha, R. and Selvam, M.M., Int J. Curr Microbiol App Sci., 3,83,(2014).
  121. Manivasagan, P., Venkatesan, J., Sivakumar, K. and Kim, S.K., Crit. Rev. Microbiol., 42,209, (2016).
    CrossRef
  122. Sinha, S., Paul, N,D., Halder, N., Sengupta, D. and Patra Patra, S.K.,  Appl Nanosci., 5,703, (2015).
    CrossRef
  123. Pasca, R.D., Mocanu, A., Cobzac, S.C., Petean, I., Horovitz, O., and Tomoaia-Cotisel, M., Particulate Sc. and Tech., An Int. Journal,32, 131,(2014).
    CrossRef
  124. Jha, A.K. and Prasad, K., Int. J. of Green Nanotechnology, 4, 219,(2013).
    CrossRef
  125. Mishra, A.N., Bhadauria, S., Gaur, M.S., Pasricha, R. and Kushwah, B.S., Int. J. of Green Nanotech.:Physics and Chemistry,1,118,(2010).
  126. Suman, T.Y., Rajasree, S.R.R., Ramkumar, R., Rajthilak, C., and Perumal, P., Spectrochimic. Acta Part A Mol. Biomol. Spectrosc., 118, (2014).
  127. Song, J.Y.,  Jang, H.K., and Kim, B.S., Korean J. Chem. Eng., 25, 808, (2008).
    CrossRef
  128. Sheny, D.S., Mathew, J., and Philip, D., Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 79, 254, (2011).
    CrossRef
  129. Yadav, K.K., J. of Mat. and Env. Science, 8, 740,(2017).
  130. Balaji, D.S., Basavaraja, S., Deshpande, R., Mahesh, D.B., Prabhakar, B.K. and Venkataraman, A., Colloids Surf B, 68,88,(2009).
    CrossRef
  131. Park, Y., Hong, Y.N., Weyers, A., Kim, Y.S. and Linhardt, R.J., IET Nanobiotechnol, 5,69,(2011).
    CrossRef
  132. Ahmad, A., Senapati, S., Khan, M.I., Kumar,R., Ramani, R., Srinivas, V. and Sastry, M., Nanotechnology 14,824, (2003); doi:/10.1088/0957-4484/14/7/323
  133. Balagurunathan, R., Radhakrishnan, M., Rajendran, R.B. and Velmurugan, D., Indian J Biochem Biophys, 48,331, (2011).
  134. Kuppusamy, P., Yousoff, M.M., Manian, G.P. and Govindan, N., Saudi Pharm. J., 24,473, (2014); doi:10.1016/j.jsps.2014.11.013.
    CrossRef
  135. Ahmad, A., Senapati, S., Khan, M.I., Kumar, R. and Sastry, M., Langmuir, 19, 3550, (2003)135.
  136. Malarkodi, C., Rajeshkumar, S., Vanaja, M., Paulkumar, K., Gnanajobitha, G. and Annadurai, G., J Nanostruct Chem, 3, 1,(2013).
    CrossRef
  137. Narayanan, K. and Sakthivel, N., World J. Microbiol. Biotechnol., 29, 2207, (2013).
    CrossRef
  138. He, S., Guo, Z., Zhang, Y., Zhang, S., Wang, J. and Gu,N., Mater Lett., 61,3984,(2007).
    CrossRef
  139. Castro-Longoria, E., Vilchis-Nestor, A.R. and Avalos-Borja, M., Colloids Surf. B Biointerfaces., 83, 42,(2011).
    CrossRef
  140. Mishra, A., Tripathy, S., Wahab, R., Jeong, S.H., Hwang, I., Yang, Y.B., Kim, Y.S., Shin, H.S. and Yun, S.I., Appl. Microbiol. Biotechnol., 92, 617,(2011).
    CrossRef
  141. Saravanan, M. and Nanda, A., Colloids Surf. B Biointerfaces, 77, 214,(2010).
    CrossRef
  142. Kanchi, S., Kumar, G.K., Lo, An-Ya., Tseng, C.M., Chen, S.K., Lin, C.Y. and Chin, T.S., Arab. J. of Chem., 11,247,(2018); https://doi.org/10.1016/j.arabjc.2014.08.006.
    CrossRef
  143. Zha, J., Dong, C., Wang, X., Zhang, X., Xiao, X. and Yang, X., Optik – Int. J.for Light and Electron Optics, 144, 511,(2017) ; https://doi.org/10.1016/j.ijleo.2017.06.088.
    CrossRef
  144. Kumar, K.P., Paul, W. and Sharma, C.P., Process Biochem., 46,2007,(2011).
    CrossRef
  145. Mishra, S., Dixit, S., Soni, S., Bio-Nanoparticles: Biosynth. Sustain. Biotechnological. Implications,20, 141,(2015); doi:10.1002/9781118677629.ch7.
    CrossRef
  146. Kumar, K.M., Sinha, M., Mandal, B.K., Ghosh, A.R., Kumar, K.S. and Reddy, P.S., Spectrochimica Acta Part A:Mol. and Biomol. Spectroscopy,91,228,(2012).
  147. Kumar, K.M., Mandal, B.K., Sinha, M. and Krishnakumar, V, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 86, 490,(2012).
    CrossRef
  148. Phumying, S., Labuayai, S., Thomas, C., Amornkitbamrung, V., Swatsitang, E. and Maensiri, S., Appl Phys A., 111,1187,(2013).
    CrossRef
  149. Njagi, C.E., Huang, H., Stafford, L., Genuino, H., Galindo, M.H., Collins, B.J., Hoag, E.G. and Suib, L.S. Langmuir, 27, 264, (2011).
    CrossRef
  150. Latha N, Gowri M. Int J Sci Res., 3,1551,(2014).
  151. Mahdavi, M., Namvar, F., Ahmad, M.B. and Mohammad, R., Molecules, 18, 5954,(2013).
    CrossRef
  152. Pattanayak, M. and Nayak, P.L., World J. Nano Sci. Technol., 2(1), 06 09,(2013).
  153. Narayanan, K.B. and Sakthivel, N., J Hazard Mater, 189, 519,(2011).
    CrossRef
  154. Binupriya, A.R., Sathishkumar, M., Vijayaraghavan, K. and Yun, S.I., J Hazard Mate, 177,539,(2010).
    CrossRef
  155. Elcey, C., Kuruvilla, A.T. and Thomas, D., Int. J. Curr. Microbiol. Appl. Sci., 3,408,(2014).
  156. Arčon, I., Piccolo, O., Paganelli, S. and Baldi, F., Biometals, 25(5),875, (2012).
    CrossRef
  157. Kaul, R., Kumar, P., Burman, U., Joshi, P., Agrawal, A., Raliya, R. and Tarafdar, J., Mater Sci-Poland, 30,254,(2012).
    CrossRef
  158. Laokul, P. and Maensiri, S., J. of optoelecronics and Adv. Mat., 11, 857,(2009).
  159. Phumying, S., Labuayai, S., Swatsitang, E., Amornkitbamrung, V. and Maensiri, S., Mat. Res. Bull., 48, 2060,(2013).
    CrossRef
  160. Taranath, T.C. and Patil, B.N., Int. J. Mycobacteriol., 5,197, (2016); 10.1016/j.ijmyco.2016.03.0041.
  161. Jamdagni, P., Khatri, P., Rana, J.S., J. King Saud Univ.-Sci., 30,168, (2016);doi 10.1016/j.jksus.2016.10.002.
    CrossRef
  162. Sundrarajan, M., Ambika, S., Bharathi, K., Adv. Powder Technol., 26,1294, (2015);10.1016/j.apt.2015.07.001.
    CrossRef
  163. Rajiv, P., Rajeshwari, S., Venckatesh, R., Spectrochimica Acta–Part A, 112,384,(2013); 10.1016/j.saa.2013.04.072.
    CrossRef
  164. Vijayakumar, S., Vinoj, G., Malaikozhundan, B., Shanthi, S. and B. Vaseeharan., Spectrochimica Acta–Part A, 137,886, (2015); 10.1016/j.saa.2014.08.064.
    CrossRef
  165. Dobrucka, R., Długaszewska, J., Saudi J. Biol. Sci., 23,517, (2016); 10.1016/j.sjbs.2015.05.016.
    CrossRef
  166. Yedurkar, S., Maurya, C., Mahanwar, P., Open J. Synth. Theory Appl., 5,1,(2016); 10.4236/ojsta.2016.51001.
    CrossRef
  167. Zhang, W-X., J. of Nanoparticle Res., 5,323, (2003).
    CrossRef
  168. Lee, C., Kim, J.Y., Lee, W.I., Nelson, K.L., Yoon, J., Sedlak, D.L., Environ Sci. Technol, 42,4927, (2008).
    CrossRef
  169. Raliya, R., Tarafdar, J.C., Int. Nano Lett., 4,1,(2014).
    CrossRef
  170. Raliya, R., Tarafdar, J.C., Agri. Res., 2,48, (2013).
    CrossRef
  171. Xu, J-C., Mei, L., Guo, X-Y., and Li, H-U., J. of Molecular Catalysis A: Chemical, 226,123,(2005).
    CrossRef
  172. Mazumdar, H., Haloi, N., J. Microbiol Biotechnol Res., 1,39, (2011).
  173. Kaur, P., Thakur, R., Chaudhury, A., Green Chem. Let. and Rev., 9,33,(2016).
    CrossRef
  174. Kulkarni, V., and Kulkarni, P., Nano Sc. and Nano Tech., 8,401,(2014).
  175. Dashora, A., Sharma, K., Adv. Sc. Eng. and Med., 10, 523,(2018).
    CrossRef
  176. El-Refai, A.A., Ghoniem, G.A., El-Khateeb, A.Y. and Hassan, M.M., J Nanostruct. Chem.  8,71,(2018); https://doi.org/10.1007/s40097-018-0255-8.
    CrossRef
  177. Kulkarni, D.V., Kulkarni, P.S., Int. J. of Chem.Stud., 1,3,(2013).
  178. Naika, H.R., Lingaraju, K., Manjunath, K., Kumar, D., Nagaraju, G., Suresh, D., Nagabhushana, H., J.of Taibah Univ. for Science, 9,7,(2015).
  179. Sivaraj, R., Rahman, P.K., Rajiv, P., Salam, H.A., Venckatesh, R., Spectrochimica Acta Part A: Molecu. and Biomol. Spect., 133, 178,(2014).
    CrossRef
  180. Sharma, J.K., Akhtar, M.S., Ameen, S., Srivastava, P., Singh,G., J.of Alloys and Compounds, 632,321,(2015).
    CrossRef
  181. Sankar, R., Maheswari, R., Karthik, S., Shivashangari, K.S., Ravikumar, V., Materials Science and Engineering: C.,44,234,(2014).
    CrossRef
  182. Sankar, R., Manikandan, P., Malarvizhi, V., Fathima, T., Shivashangari, K.S. and Ravikumar, V., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121,746,(2014).
    CrossRef
  183. Kumar, B., Smita, K., Cumbal, L., Debut, A. and Angulo, Y., J.of Saudi Chemical Society, 21,S475,(2017).
  184. Wang, T., Lin, J., Chen, Z., Megharaj, M. and Naidu, R., J. of Cleaner Production, 83,413,(2014).
    CrossRef
  185. Shobha, G., Moses, V., Ananda, S., Int. J. Pharm. Sci. Invent., 3,28, 38(2014).
  186. Kim, A., Muthuchamy, N., Yoon, C., Joo, S. and Park, K., Nanomaterials, 8, 138, (2018).
    CrossRef
  187. Varshney, R., Seema, B., Gaur, M.S., Pasricha, R., J.of Metals,62,102,(2010).
  188. Parveen, F., Sannakki, B., Mandke, M.V., Pathan, H.M., Solar Energy Materials and Solar Cells, Volume 144,371,(2016); https://doi.org/10.1016/j.solmat.2015.08.033 188.
    CrossRef
  189. Umer, A., Naveed, S. and Ramzan, N., World Sci. Publ. Company, 7,18,(2012).
  190. Majumder, B.R., Int. J.of Eng. Sci. and Tech., 4, 4380,(2012).
  191. Salvadori, M.R., Ando, R.A., Nascimento, C.A.O. and Corrêa, B.PLOS ONE,9, e87968, (2014).
    CrossRef
  192. Honary, S., Barabadi, H., Fathabad, E.G. and Naghibi, F., Dig. J.of Nanomat. and Biostruc., 7,999, (2012).
  193. Cuevas, R., Durán, N., Diez, M.C., Tortella, G.R.O. and Rubilar, O., Journal of Nanomaterials, 2015,1,(2015).
    CrossRef
  194. Abboud, Y., Saffaj, T., Chagraoui, A., Bouari, E., Brouzi, K., Tanane, O., Ihssane, B., Applied Nanoscience, 4,571,(2014).
    CrossRef
  195. Sivaranjani, V. and Philominathan, P., Wound Medicine, 12,1,(2015).
    CrossRef
  196. Sundrarajan, M. and Gowri, S., Chalcogenide Letters, 8, 447,(2011).
  197. Subhapriya, S. and Gomathipriya, P., Microb.Pathog., 116,215, (2018); DOI: 10.1016/j.micpath.2018.01.027.
    CrossRef
  198. Rai, P.K., Kumar, V., Lee, S.S., Raza, N., Kim, K.H., Ok, Y.S. and Tsang, D.C.W., Environment International, 119,1,(2018).
    CrossRef
  199. Rajakumar, G.I., Rahuman, A.A., Jayaseelan, C., Santhoshkumar, T., Marimuthu, S., Kamaraj, C., Bagavan, A., Zahir, A.A., Kirthi, A.A., Elango, G., Arora, P., Karthikeyan, R., Manikandan, S. and S. Jose, Parasitol Res.,113,469,(2014);doi: 10.1007/s00436-013-3676.
  200. VishnuKirthi, A., AbdulRahuman, G., Rajakumar, S., Marimuthu, T., Santhoshkumar, C., Jayaseelan, G., Elango, A., Abduz Zahir, C. and Kamarajbagawan, A., Materials Letters, 65,2745,(2011).
  201. Khan, R. and Fuleka, M.H., Journal of Colloid and Interface Science, 475,184,(2016).
    CrossRef
  202. Jayaseelan, C., Rahuman, A.A., Roopan, S.M., Kirthia, A.V., Kim, Se-K., Iyappan, M. and Siva, C., Spectrochimica Acta Part A: Molecular and Biomolecular Spect., 107,82,(2013).
    CrossRef
  203. Tarafdar, A., Raliya, R., Wang, W.-N., Biswas, P. and Tarafdar, J., Adv. Sci. Eng. Med., 5, 943, (2013).
    CrossRef
  204. Subramanyam, S.G. and Siva, K., Int. J.of Life Sciences Res., 4,69,(2016).
  205. Raliya, R., Rathore, I. and Tarafdar, J.C., J. Bionanosci., 7, 59, (2013).
  206. Jia, L., Zhang, Q., Li, Q. and H. Song, Nanotechnology,20,385601, (2009).
    CrossRef
  207. Yang, X., Li,Q., Wang, H., Huang, J., Lin,L., Wang, W., Sun, D., Su, Y., Opiyo, J.B., Hong, L. and Y. Wang, J. of Nanopart. Res., 12,1589,(2010).
    CrossRef
  208. Rajakumar, G., Rahuman, A.A., Chung, I., Kirthi, A.V., Marimuthu, S. and K. Anbarasan, Parasitology research, 114,1397,(2015).
    CrossRef
  209. Minal, S. P. and Prakash, S., Int. J. of Adv. Eng. and Nano Tech., 3,1,(2018).
  210. Shaik, M.R., Ali, Z.J.Q., Khan,M., Kuniyil, M., Assal, M.E., Alkhathlan, H.Z., Warthan, A.A., Siddiqui, M.R.H., Khan, M., Farooq, S. and Adil, S. F., Molecules, 22,165, (2017).
    CrossRef
  211. Wang, Z., Fang, C. and Megharaj, M., ACS Sustain Chem Eng., 2,1022,(2014).
    CrossRef
  212. Kharissova, O.V., Dias, H.V.R., Kharisov, B.I., Pérez, B.O., Jiménez Pérez, V.M., Trends in Biotechnology, 31,240, (2013).
    CrossRef
  213. Gurunathan, S., Kim, E., Han, J.W., Park, J.H. and Kim, J.H., Molecules, 20,22476,(2015).
    CrossRef
  214. Yadav, D., Kumar, P., Kapur, M. and Mondal, M.K., Environ. prog. and  sustain.energy, May (2018); https://doi.org/10.1002/ep.12920.
    CrossRef
  215. Zhang, W-X ., Soy Protein and/or Soy Derivatives With Zero-Valent Iron Compositions and Use For Environmental Remediation. U.S. Patent # US 7,507,345 B2 (2009).
  216. Naraginti, S. and Sivakumar, A., Spectrochim Acta A Mol Biomol Spectrosc., 128,(2014); doi: 10.1016/j.saa.2014.02.083.
    CrossRef
  217. Prasad, K. and Jha, A. K., Nat. Sci., 1,129, (2009).
  218. Mashrai, A., Khanam, H. and Aljawfi, R.N., Arabian J Chem., 10,S1530,(2013); https://doi.org/10.1016/j.arabjc.2013.05.004.
    CrossRef
  219. Chong, M.N., Jin, B., Chow, C.W. and Saint, C.,Water Res., 44,2997,(2010).
    CrossRef
  220. Dastjerdi, R. and Montazer, M., Colloids Surf B, 79,5,(2010).
    CrossRef
  221. Thome, A., Reddy, K.R., Reginatto, C. and Cecchin, I., Water, Air Soil Pollut., 226,1e20,(2015).
  222. Tratnyek, P.G. and Johnson, R.L., Nano Today, 1,44,(2006).
    CrossRef
  223. Zeng, S., Weng, X., Tong, Y., Lin, W. and Chen, Z., Acta Sci. Circumst., 35, 3538(2015).
  224. Xu, P., Zeng, G.M., Huang, D.L.,  Feng, C.L., Hu, S., Zhao, M.H., Lai,C., Wei, Z., Huang, C., Xie, G.X. and Liu, Z.F., Sci Total Environ. 2012;424,1,(2012);  doi: 10.1016/ j. scitotenv. 2012.02.023.
  225. Kora, A.J. and Rastogi, L., Arabian J Chem.,2,450,(2015).
  226. Saif, S., Tahir, R. and Chen, Y., Nanomaterials, 6, E209, (2016); doi: 10.3390/nano6110209.
    CrossRef
  227. S. Iravani, Green Chem., 13, 2638,(2011).
    CrossRef
  228. Yagub, M.T., Sen, T.K., Afroze, S. and Ang, H.M., Adv. Colloid Interface Sci., 209, 172,(2014).
    CrossRef
  229. Kitching, H., Kenyon, A.J. and Parkin, I.P., Phys. Chem. Chem. Phys.,16, 6050,(2014).
    CrossRef
  230. Quinn, J., Geiger, C., Clausen, C., Brooks, C. and Coon, C., Environ. Sci. Technol., 39,1309,(2005); doi: 10.1021/es0490018
    CrossRef
  231. Nutt, M.O., Heck, K.N., Alvarez, P. and Wong, M.S., Applied Catalysis B: Environ., 69, 115,(2006).
    CrossRef
  232. Hu, L., Xia, Z., J. of Hazard. Mat., 342, 446, (2018).
    CrossRef
  233. Ahamed, M.I.N., Rajeshkumar, S., Ragul, V., Anand, S. and Kaviyarasu, K., South African J. of Chem.Eng.,25,28,(2018).
  234. Wang, X., Zhang, D., Pan, X., Lee, D-J. and G.M. Gadd, Chemosphere, 170,266,(2017).
    CrossRef
  235. Shi, Z., Fan, D., Johnson, R.L., Tratnyek, P.G. and Williams, K.H., J. of Contaminant Hydrology, Volume 181,17,(2015).
    CrossRef
  236. Selvakumar, R., Ramadoss, G., Menon, M.P., Rajendran, K. and Megharaj, M., J. of Environ. Radioactivity, In press, corrected proof, Available online 7 March (2018).
  237. He, L., Wang, M., Zhang, G., Qiu,G. and Zhang, X., J. of Hazard. Mater., 294, 64,(2015).
    CrossRef
  238. Floris, B., Galloni, P., Sabuzi, F. and Conte, V., Inorganica Chimica Acta.,455,429,(2017).
    CrossRef
  239. Alsharari, S. F., Tayel, A.A. and Moussa, S.H., Intern. J.of Biological Macromolecules, In press, corrected proof, Available online 17 July (2018).
  240. Vo H, Nhat P., Ngo, H. H., Guo, W.S., Chang, S.W. and Guo, J.B., Bioresource Technology, 256,491,(2018).
    CrossRef
  241. Song, B., Zeng, G., Gong, J., Liang, J. and Ren, X., Environment International,105,43,(2017).
    CrossRef
  242. Jung, H.B., Xu, H., Konishi, H. and Roden, E. E., J. of Geochem. Exploration,169,80,(2016).
    CrossRef
  243. Su, H., Fang, Z., Tsang, P.E., Fang, J. and Zhao, D., Environmental Pollution,214, 94,(2016).
    CrossRef
  244. Sneh Lata and Samadder, S. R., J.of Environ.Management, 166,387,(2016).
  245. Velimirovic, M., Schmid, D., Wagner, St., Micić, V., der Kammer, F. and Hofmann, T., Science of The Total Environment, 563,713,(2016).
    CrossRef
  246. Michálková, Z., Komárek, M., Šillerová, Puppa, H., L.D., Joussein, E., Bordas, F., Vaněk, A., Vaněk, O. and Ettler, V., J. of Environ. Management, 146,226,(2014).
    CrossRef
  247. Ma, G., Salahub, S., Montemagno, C. and Abraham, S., Nano-Structures & Nano-Objects, 13,74,(2018).
    CrossRef
  248. Campbell, K. M., Gallegos, T.J. and Landa, E. R., Applied Geochemistry,57,206,(2015).
    CrossRef
  249. Subbulekshmi, N. L. and Subramanian, E., J.of Environ.Chemical Eng.,5,1360,(2017).
  250. Kahraman, H.T., Internat. J. of Biolog. Macromolecules,94,202,(2017).
    CrossRef
  251. Pandi, K., Periyasamy, S. and Viswanathan, N., Internat. J. of Biological Macromolecules, 104B,1569,(2017).
    CrossRef
  252. Asmel, N.K., Yusoff, A.R.M., Krishna, L.S., Majid, Z.A. and Salmiati, S., Chemical Eng. J.,  317,343,(2017).
    CrossRef
  253. Azzam, A.M., El-Wakeel, S.T., Mostafa, B.B. and El-Shahat, M.F., J. of Environ.Chemical Eng., 4,2196,(2016).
    CrossRef
  254. Zhang, W., Lo Irene, M.C., Liming, Hu., Voon, C.P., Lim, B.L. and Versaw, W.K., Environ. Sci. & Tech.52, 4385,(2018); doi: 10.1021/acs.est.7b06697.
    CrossRef
  255. Aguilar, Z.P., Nanomaterials for Medical Applications, 361,(2013); https://doi.org/10.1016/B978-0-12-385089-8.00008-X.
    CrossRef


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.