ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039
     FacebookTwitterLinkedinMendeley

Adsorption of Si6O12 on CNTs in view point of NMR shielding tensors and NBO analysis: A novel material for drug delivery

Zahra Barmaki,*

Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Correspondence Author Email: z.barmaki63@yahoo.com

DOI : http://dx.doi.org/10.13005/ojc/310353

Article Publishing History
Article Received on :
Article Accepted on :
Article Published : 10 Aug 2015
Article Metrics
ABSTRACT:

The interaction of  the Si6O12 molecule over  the CNTs have been investigated with density functional theory using HF and B3LYP method and 6-31G, 6-31G** and 6-311G** basis sets. We also analyze the electronic structure and charge Mulliken population for the energetically most favorable complexes. Our results indicate Si6O12 can form stable bindings with CNTs via the Oxygen. The NMR shielding tensors have been investigated. The same Study performed for Si7O14 and we found that this molecule can form stable bindings with CNTs via the Silicon site. Thus, we arrive at the prediction that the even number (Si6O6) has a different mechanism for adding to CNTs compare to add number such as Si7O14.

KEYWORDS:

The interaction of the Si6O12; Adsorption; CNTs

Download this article as: 

Copy the following to cite this article:

Barmaki Z. Adsorption of Si6O12 on CNTs in view point of NMR shielding tensors and NBO analysis: A novel material for drug delivery. Orient J Chem 2015;31(3).


Copy the following to cite this URL:

Barmaki Z. Adsorption of Si6O12 on CNTs in view point of NMR shielding tensors and NBO analysis: A novel material for drug delivery. Orient J Chem 2015;31(3). Available from: http://www.orientjchem.org/?p=10244


Introduction

SWCNTs have considered as the leading candidate for nano-device applications because of their one-dimensional electronic bond structure, molecular size, and biocompatibility, controllable property of conducting electrical current and reversible response to biological reagents hence SWCNTs make possible bonding to polymers and biological systems such as DNA and carbohydrates [28-35].

The carbon nanotube (CNT) is a representative nano-material. CNT is a cylindrically shaped carbon material with a nano-metric-level diameter [1-15].

Its structure, which is in the form of a hexagonal mesh, resembles a graphite sheet and it carries a carbon atom located on the vertex of each mesh. The sheet has rolled and its two edges have connected seamlessly [12-30].

Although it is a commonplace material using in pencil leads, its unique structure causes it to present characteristics that had not found with any other materials. CNT can be classified into single-wall CNT, double-wall CNT and multi-wall CNT according to the number of layers of the rolled graphite [22-42].

The type attracting most attention is the single-wall CNT, which has a diameter deserving the name of “nanotube” of 0.4 to 2 nanometers. The length is usually in the order of microns, but single-wall CNT with a length in the order of centimeters has recently released [42-50].

CNT can be classified into single-wall CNT, double-wall CNT and multi-wall CNT according to the number of layers of the rolled graphite. The type attracting most attention is the single-wall CNT, which has a diameter deserving the name of “nanotube” of 0.4 to 2 nanometers [50-63].

Its structure, which is in the form of a hexagonal mesh, resembles a graphite sheet and it carries a carbon atom located on the vertex of each mesh. The sheet has rolled and its two edges have connected seamlessly [60-74].

The length is usually in the order of microns, but single-wall CNT with a length about centimeters have recently released. The extremities of the CNT have usually closed with lids of the graphite sheet [71-81].

The lids consist of hexagonal crystalline structures (six-membered ring structures) and a total of six pentagonal structures (five-membered ring structures) placed here and there in the hexagonal structure [79-95]. The first report by Iijima was on the multiwall form, coaxial carbon cylinders with a few tens of nanometers in outer diameter. Two years later single walled nanotubes were reported.

The carbon nanotube (CNT) is a representative nano-material. CNT is a cylindrically shaped carbon material with a nano-metric-level diameter [94-98].

 Fig 1: Si6O12 & Si7O14 binding to (10,10)CNTs in different direction  a)via Oxygen b) Via Silicone

Figure 1: Si6O12 & Si7O14 binding to (10,10)CNTs in different direction  a)via Oxygen b) Via Silicone

 

Click here to View figure

 

In the NBO analysis, the interaction arising from electron delocalization are analyzed by selecting a number of natural bonding and anti-bonding orbitals that distort from the idealized Lewis structure, caused by interactions among them through hyper-conjugative or electrostatic interactions. In NBO analysis, the input atomic orbital basis set is transformed via natural atomic orbitals (NAOs) and natural hybrid orbital (NHOs) into NBO.  In the present theoretical study, particular attention has been paid to the structural properties of The Si6O12-CNTs and Si7O14-CNTs   systems. So, the NBO analysis gives supplementary information of the relative structural properties. It should be noted that conjugated systems, such as benzene and p-conjugated linear molecules, have been well studied with NBO analysis.

Computational Details

Calculations were performed using an all-electron linear combination of atomic orbitals Hatree–Fock (HF) and density functional theory (DFT) calculations using the Gaussian 03 package. The optimizations of antibiotics and Si6O12 are carried out including exchange and correlation contributions using Beckẻs three parameter hybrid and Lee-Yang-Parr (LYP) correlation [B3LYP]; including both local and non local terms. We have geometric optimization calculation at the HF/6-31G, HF/6-31G**, HF/6-311G**. We have also performed a geometric optimization calculation at the B3LYP/6-31G, B3LYP/6-31G** and B3LYP/6-31G** level.

The NMR isotropic shielding constants were calculated using the standard GIAO (Gauge-Independent Atomic Orbital) approach of Gaussian 03 program package.

a) The isotropic value σiso of the shielding tensor which can be defined as:

formula1

 

Results and Discussion

We studied about Si6O12 and Si7O14 molecules as the novel material for drug delivery.

Before and after connecting to the CNTs. NMR and NBO calculations were performed in electric field of charges. NMR and NBO parameters are listed in tables 1-5 in different levels and different basis sets.
HOMO and LUMO and Gap energy of MWC-Nano-cones are listed in Table1.

Contour line map of Localized orbital Locator (LOL) and Relief map (Shaded Surface map with projection) for electron density of Si6O12 are shown in Fig2 & 3. electron Localization Function of Si6O12 is shown in Fig 4.

 Fig2: Contour line map of Localized orbital Locator (LOL)

(Figure 2: Contour line map of Localized orbital Locator (LOL

 

Click here to View figure

 

 Fig3: Shaded Surface map with projection of  electron density including 5 sharp peak and one blunt Figure 3: Shaded Surface map with projection of electron density including 5 sharp peak and one blunt 

Click here to View figure

 

 Fig4: electron Localization Function of Si6O12

Figure 4: electron Localization Function of Si6O12

 

Click here to View figure

 

The situation of Si6O12 adsorption over CNTs and The situation of Si7O14 are shown in Fig1. Considering the optimized structure, the NMR shielding tensors were calculated then these parameters were used to show active sites in this structure. The results of бiso, бaniso, δ, Δб and η for this nano-cone in the same methods and basis sets are shown in table 2. Finally the charts of бiso, бaniso, δ and η for the atoms of Si6O12 Si7O14in 6-31G,  6-311G**,  level of theory and B3LYP method. We can obtain the interesting results from the NMR charts. Comparison of these charts (бiso, бaniso, δ and η) shows that some of peaks in these charts are similar to each other. If these peaks are reviewed, we can understand which similar atoms are situated in the same peaks of different charts. The comparison of these peaks shows that three atoms are exactly repeated in бiso, бaniso, δ and η charts. These three atoms are the active sites in these structures.  In general, the chart of electronic charge in different methods and basis sets is similar to the charts of NMR parameters Silicon atoms have more electrons than oxygen atoms.

So we can find that most chemical shielding. The concavity points are created due to the change of negative charge into a positive charge.

The electron density figure show that the mechanism of positive charge is different from negative charge. Positive and negative areas are completely different.

The results show that the heterocycle drugs connect to Si6O12 is stronger than Si7O14.

NBO analysis of the Si6O12 and Si7O14 system at the level of B3LYP/6-31g theory with different has been given in Table 3-6. The coefficients of s and p orbitals of both Si-O in Si6O12 and Si7O14 bonds can be distinguished based on these NBO data. Based on the constant values of the coefficients of linear combination of s and p orbitals of different bonds, a specific voltage differences could be expected. Summary of Natural Population analysis and Natural Population is listed in Table 3.Natural electron configuration of Valance and core electrons is listed in table 4. Occupancy, geminal, vicinal, energy, NBO, Principal delocalization is listed in Table 6.

Table 1 Table 1 


Click here to View table

 

Table 2: NMR parameters of Silicon andOxygen in Si6O12CNTs and Si7O14CNTs at the different levels

η δ σaniso σiso Atom B3LYP/6-311G** Si6O12CNTs

0.25

-18.9 49.5 129.0 (1)O
0.8 -45.

81.0

65.1 (2)O
0.79 -51.5 92.7 50.4 (3)O

0.61

-133.2 277.6 -26.7 (4)O
0.3 -22.8 57.2 58.3 (5)O
0.64 -59.0 120.3 177.0 (6)O
0.64 -159.8 324.0 76.9 (7)O
0.22 -20.0 53.3 108.6 O(8)
0.87 -13.0 21.9 159.1 O(9)
0.88 -54.8 92.1 47.2 O(10)
0.72 -18.8 35.9 171.8 O(11)
0.08 -55.1 45.0 203.8 O(12)
0.35 -16.2 16.5 179.4 Si(1)
0.84 -9.4 16.3 183.0 Si(2)
0.48 -24.2 26.9 159.3 Si(3)
0.82 -42.2 74.4 72.3 Si(4)
0.28 -19.3 49.8 164.6 Si(5)
0.20 -18.1 48.8 167.0 Si(6)
0.83 -19.3 33.7 175.5 (1)O B3LYP/6-31G Si6O12CNTs
0.67 -159.6 317.1

90.0

(2)O
0.76 -43.4 80.5 79.1 (3)O

0.68

-129.4

255.5

20.8

(4)O

0.40

-19.2

46.03

94.2

(5)O

0.50

-56.6

126.5

217.8

(6)O

0.94

-56.0

81.9

75.7

(7)O

0.12

-62.04

52.2

203.5

O(8)

0.8

-9.4

16.9

187.5

O(9)

0.8

-45.6

76.2

74.6

O(10)

0.52

-72.7

83.3

131.

O(11)

0.76

-20.0

37.2

179.5

O(12)

0.23

-15.1

14.1

200.3

Si(1)

0.48

-58.0

131.7

207.4

Si(2)

0.34

-20.3

20.4

185.8

Si(3)

0.93

-42.5

67.8

77.8

Si(4)

0.80

-65.5

88.5

160.7

Si(5)

0.4

-24.0

56.1

142.0

Si(6)

0.92

-30.9

44.7

90.5

(1)O

B3LYP/6-311G** Si7O14CNTs

0.64

152.4

308.8

97.0

(2)O

0.75

-41.2

77.1

75.4

(3)O

0.85

-33.2

46.3

93.9

(4)O

0.42

-19.2

45.6

95.7

(5)O

0.53

-53.4

117.5

220.2

(6)O

0.95

-51.1

80.1

73.0

(7)O

0.87

-34.3

48.4

83.3

O(8)

0.77

-23.1

42.6

139.9

O(9)

0.91

-57.1

92.7

49.9

O(10)

0.19

-59.4

53.1

162.3

O(11)

0.80

-45.1

81.0

65.1

O(12)

0.51

101.5

-45.6

55.6

O(13)

0.47

44.8

-19.6

155.3

O(14)

0.30

-13.0

12.7

196.3

Si(1)

0.70

-18.2

35.3

165.2

Si(2)

0.44

-19.4

21.1

183.5

Si(3)

0.89

-39.5

65.4

75.9

Si(4)

0.71

-60.5

77.9

176.7

Si(5)

0.26

-18.6

48.5

138.3

Si(6)

0.13

-88.80

75.4

98.4296

Si(7)

-0.44

-23.6

55.0

135.1

(1)O

B3LYP/6-31G Si7O14CNTs

-0.67

-128.7

256.6

32.5

(2)O

-0.73

-43.2

81.7

67.6

(3)O

-0.69

-137.3

269.41

8.15

(4)O

-0.35

-20.6

51.01

86.57

(5)O

-0.82

-22.5

39.8

156.8

(6)O

-0.95

-54.1

85.0

65.2

(7)O

0.06

-58.5

46.7

190.53

O(8)

-0.80

-10.2

18.4

174.0

O(9)

-0.82

-45.26

79.8

55.0

O(10)

-0.26

-19.78

51.5

156.0

O(11)

-0.83

-20.5798

35.8143

167.8563

O(12)

0.45

-41.2

95.83

187.6

O(13)

0.9

-70.7

115.6

29.1

O(14)

0.39

-14.5

15.2

188.9

Si(1)

-0.71

-18.6

35.9

156.6

Si(2)

0.48

-21.2

23.6

175.7

Si(3)

-0.89

-42.8

71.3

68.8

Si(4)

0.73

-67.24

87.43

162.2

Si(5)

-0.25

-18.9

49.5

129.0

Si(6)

0.86

-41.3

70.4

41.287

Si(7)

 Table 3: Summary of Natural Population Analysis: Table3  Natural Population Table 3: Summary of Natural Population Analysis Natural Population 

Click here to View table

 

 Table4: Natural Electron Configuration     Atom No                 valance/core Table 4: Natural Electron Configuration A to m No valance/core 

Click here to View table

 

Table 5: Natural Bond Orbital Analysis Occupancies Lewis Structure Low High Table 5: Natural Bond Orbital Analysis Occupancies Lewis Structure Low High 


Click here to View table

 

Table 6: Natural Bond Orbitals Summary) Principal Delocalization NBO Occupancy Energy geminal, vicinal, remote Table 6: Natural Bond Orbitals Summary) Principal Delocalization NBO Occupancy Energy geminal, vicinal, remote.

Click here to View table

 

References

  1. Hartogh, Paul; Lis, Dariusz C.; Bockelée-Morvan, Dominique; De Val-Borro, Miguel; Biver, Nicolas; Küppers, Michael; Emprechtinger, Martin; Bergin, Edwin A. et al. Nature. 2011, 478 (7368), 218–220.
  2. Hersant, Franck; Gautier, Daniel; Hure, Jean‐Marc. The Astrophysical Journal, 2001, 554 (1), 391–407.
  3. Altwegg, K.; Balsiger, H.; Bar-Nun, A.; Berthelier, J. J. et al.. Science, 2014, 347: 1261952..
  4. Rubio Angel; Corkill , Jennifer L.; Cohen , Marvin L. Phys. Rev. 1994. B, 49, 5081
  5. Bourgeois,L.; Bando,Y.; Han, W.Q.; Sato, T.Phys. Rev. 2000, B, 61, 7686.
  6. Terauchi, M.; Tanaka, K.; Suzuki, A.; Ogino, K.; Kimura, Chem. Phys. Lett. 2000, 324, 359.
  7. Sachdeva, H, Frank Müllera, F .; Stefan Hüfnerb, S. Diamond and Related Materials, 2010. 19, 1027-1033.
  8. Massimo, Fusaro .:Quantum Matter,2014, 3, 481-487
  9. Micheal Arockiaraj , Rev. Theor. Sci. 2014, 2, 261-273
  10. Kroto, H. W.; Health, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature (London), 1985, 318, 162
  11. Iijima Sumio. Nature (London), 1991. 354, 56.
  12. Chopra, Nasreen G.; Luyken , R. J.; Cherrey , K.; Crespi , Vincent H.; Cohen, Marvin L.; Louie, Steven G.; Zettl , A. Science,1995, 269, 966.
  13. Monajjemi, M.; Baei, M.T.; Mollaamin, F. Russian Journal of Inorganic Chemistry. 2008, 53 (9), 1430-1437
  14. Monajjemi, M.; Rajaeian, E.; Mollaamin, F.; Naderi, F.; Saki, S. Physics and Chemistry of Liquids. 2008, 46 (3), 299-306
  15. Monajjemi, M.; Seyed Hosseini, M. Journal of Computational and Theoretical Nanoscience .2013 ,10 (10), 2473-2477
  16. Yahyaei ,H.; Monajjemi, M. Fullerenes, Nanotubes, and Carbon Nanostructures. 2014, 22(4), 346–361
  17. Monajjemi, M .; Jafari Azan, M.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures. 2013, 21(6), 503–515
  18. Bhupesh, Bishnoi .; Bahniman ,Ghosh .Quantum Matter.2014, 3, 469-475
  19. Sule, Celasun , Rev. Theor. Sci.2013, 1, 319-343
  20. Akshay kumar, Salimath .; Bahniman, Ghosh, Quantum Matter, 2014, 3, 72-77
  21. Nafisi, S.; Monajemi, M.; Ebrahimi, S. Journal of Molecular Structure. 2004,705 (1-3) 35-39
  22. Monajjemi , M.; Baheri ,H.; Mollaamin ,F. Journal of Structural Chemistry.2011 52(1), 54-59
  23. Monajjemi, M.; Seyed Hosseini, M.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures. 2013, 21, 381–393
  24. Monajjemi, M.; Boggs, J.E. J. Phys. Chem. A, 2013, 117, 1670 −1684
  25. Davide Fiscaletti and Amrit Sorli ,Quantum Matter,2014 3, 200-214
  26. Monajjemi , M.; Honaparvar , B.; Khalili Hadad ,B.; Ilkhani ,AR.; Mollaamin, F. Afr. J. Pharm. Pharmacol .2010, 4 (8), 521-529
  27. Bjürn Piglosiewicz, Jan Vogelsang.;Slawa Schmidt.; Doo Jae Park.; Petra Groß, .; Christoph Lienau ,Quantum Matter,2014 ,3, 297-306
  28. Monajjemi, M. Chemical Physics. 2013, 425, 29-45
  29. Fazaeli ,R.; Monajjemi ,M.; Ataherian ,F.; Zare, K. Journal of Molecular Structure: THEOCHEM.2002, 581 (1), 51-58
  30. Monajjemi, M.; Mollaamin, F, J Clust Sci, 22(2011)673.
  31. Medhat Ibrahim and Hanan Elhaes ,Rev. Theor. Sci. 2013, 1, 368-376
  32. Anurag Srivastava.; Nileshi Saraf.; A. K. Nagawat , Quantum Matter,2013, 2, 401-407
  33. IIJIMA Sumio.; YUDASAKA Masako.; NIHEY Fumiyuki.; NEC TECHNICAL JOURNAL,2007, 2,1,
  34. S. Iijima and T. Ichihasi, Nature,1993,363, 603
  35. D. S. Bethune.;C. H. Kiang.; M. S. deVries.; G. Gorman, R. Savoy.; J. Vazques.; R. Beyers, Nature ,1993, 363, 605
  36. Monajjemi, M .; Sobhanmanesh, A .; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures,2013, 21 47–63
  37. Monajjemi ,M.; Karachi ,N.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures, ,2014, 22: 643–662
  38. Monajjemi, M.; Mahdavian, L.; Mollaamin, F.: Bull .Chem.Soc.Ethiop ,2008, 22(2),1-10.
  39. V. Tozzini.; F. Buda.; A. Fasolino.; physical review letters ,2000,21,85
  40. G. Seifert.; P. W. Fowler.; Mitchell, D.; Porezag, D.; Frauenheim, Th. Chem. Phys. Lett. 1997, 268, 252
  41. Mollaamin ,F.; Baei, MT.; Monajjemi, M.; Zhiani , R.; Honarparvar , B.; Russian Journal of Physical Chemistry A, Focus on Chemistry,2008, 82 (13), 2354-2361
  42. Monajjemi, M.; Ghiasi, R. ;Ketabi, S. Journal of Chemical Research.2004, 1: 11-18
  43. Mahdavian,L.; Monajjemi, M.; Mangkorntong ,N.Fullerenes, Nanotubes and Carbon Nanostructures,2009, 17 (5), 484-495
  44. Mollaamin, F.; Gharibe, S.; Monajjemi, M. Int. J. Phy. Sci , 2011,6, 1496-1500
  45. Monajjemi, M .; Faham, R.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures , 2012 20, 163–169
  46. Monajjemi, M.; Khaleghian, M.; Tadayonpour, N.; Mollaamin, F. International Journal of Nanoscience, 2010, 9 (05), 517-529
  47. Mollaamin , F .; Najafi ,F.; Khaleghian, M.; Khalili Hadad, B.; Monajjemi ,M. Fullerenes, Nanotubes, and Carbon Nanostructures,2011 19, 653–667
  48. Monajjemi, M.; Chegini , H. ; Mollaamin , F. ; Farahani ,P, Fullerenes, Nanotubes, and Carbon Nanostructures.2011,19, 469–482
  49. Monajjemi, M.; Yamola ,H.; Mollaamin,F. Fullerenes, Nanotubes, and Carbon Nanostructures, 2014, 22, 595–603
  50. Monajjemi, M.; Heshmata, M.; Haeri, HH , Biochemistry (Moscow),2006, 71 (1), S113-S122
  51. Monajjemi, M. Theor Chem Acc , 2015, 134:77 DOI 10.1007/s00214-015-1668-9
  52. A. Rubio.; J.L. Corkill.; M.L. Cohen.; Phys. Rev. B ,1994, 49, 5081
  53. X. Blasé.; A. Rubio.; S.G. Louie.; M.L. Cohen.; Europhys. Lett, 1994.28, 335.
  54. N.G. Chopra.; J. Luyken.; K. Cherry.; V.H. Crespi.; M.L. Cohen,S.G. Louie.; A. Zettl, Science.1995 , 269, 966
  55. N.G. Chopra.;A. Zettl.;Solid State Commun.1998 ,105, 297
  56. J. Cumings.; A. Zettl, Solid State Commun.2004, 129, 661
  57. R. Ma.; Y. Bando.; H. Zhu.; T. Sato, C. Xu, D. Wu, J. Am.Chem. Soc.2002, 124, 7672,
  58. P.W. Fowler, K.M. Rogers, G. Seifert, M. Terrones, and H. Terrones, Chem. Phys. Lett. 1999, 299, 359
  59. Monajjemi, M .; Falahati, M.; Mollaamin, F.; Ionics, 2013 , 19, 155–164
  60. Monajjemi , M.; Heshmat ,M.; Aghaei , H.; Ahmadi , R.; Zare,K. Bulletin of the Chemical Society of Ethiopia, 2007, 21 (1)
  61. Monajjemi , M.; Lee, V.S. ; Khaleghian, M.; B. Honarparvar, B.; F. Mollaamin, F, J. Phys.Chem. C. 2010, 114 (2010) 15315
  62. A. Rubio, J.L. Corkill, M.L. Cohen, Phys. Rev. B.1994, 49,5081
  63. X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Europhys. Lett. 1994, 28 335.
  64. N.G. Chopra, J. Luyken, K. Cherry, V.H. Crespi, M.L. Cohen,S.G. Louie, A. Zettl, Science ,1995, 269, 966.
  65. O.R. Lourie, C.R. Jones, B.M. Bartlett, P.C. Gibbons, R.S. Ruoff,W.E. Buhro, Chem. Mater.2000, 12 ,1808;
  66. R. Ma, Y. Bando, T.Sato, Chem. Phys. Lett.2001, 337 ,61.
  67. W. Han, Y. Bando.; K. Kurashima.; T. Sato, Appl. Phys. Lett.1998, 73, 3085;
  68. (a) D. Golberg.; Y. Bando.; M. Eremets.; K. Takemura.; K. Kurashima.;H.Yusa, Appl. Phys. Lett.1996 ,69, 2045
  69. D.P. Yu, X.S. Sun, C.S. Lee, I. Bello, S.T. Lee, H.D. Gu, K.M. Leung, G.W. Zhou, Z.F. Dong.; Z. Zhang.; Appl. Phys. Lett.1998, 72 , 1966.
  70. F.Jensen.; H.Toftlund, Chem. Phys. Lett.1993, 201,89 , 94
  71. Monajjemi, M .; Aghaie , H.; Naderi , F. Biochemistry (Moscow).2007, 72 (6), 652-657
  72. Monajjemi, M. Journal of Molecular Modeling , 2014, 20, 2507
  73. Davide Fiscaletti,Rev. Theor. Sci.2013 1, 103-144
  74. Monajjemi , M.; Chahkandi ,B.; Zare,K.; Amiri, A. Biochemistry (Moscow),2005 70 (3), 366-376
  75. Monajjemi, M .; Afsharnezhad ,S.; Jaafari , M.R.; Abdolahi ,T.; Nikosade ,A.; Monajemi ,H.; Russian Journal of physical chemistry A, 2007, 2,1956-1963
  76. Monajjemi, M.; Khaleghian, M, Journal of Cluster Science. 2011, 22 ( 4 ), 673-692
  77. Mollaamin , F.; Monajjemi , M , Journal of Computational and Theoretical Nanoscience. 2012, 9 (4) 597-601
  78. Monajjemi, M. Struct. Chem, 2012, 23 551.
  79. Jon M. Matxain.; Jesus M. Ugalde.; M. D. Towler.; and R. J. Needs.; J. Phys. Chem. A 2003, 107, 10004-10010
  80. WU Haishun.;XU Xiaohong,; JIAO Haijun, Zhang Fuqiang .; JIA Jianfeng. Chinese Science Bulletin. 2003, 48, 11 1102 1107
  81. Monajjemi, M .; Ketabi ,S.; Amiri, A. Russian Journal of Physical Chemistry , 2006, 80 (1), S55-S62
  82. M. Monajjemi .; Robert Wayne Jr, J.E. Boggs, Chemical. Physics. 433 (2014) 1-11
  83. Jon M. Matxain.; Jesus M. Ugalde.; M. D. Towler.; and R. J. Needs.; J. Phys. Chem. A 2003, 107, 10004-10010
  84. WU Haishun.; XU iaohong.; JIAO Haijun, ZHANG Fuqiang .; JIA Jianfeng Chinese Science Bulletin 2003, 48 (11), 1102 1107
  85. Monajjemi , M.; Honarparvar, B.; Monajemi, H.;. Journal of the Mexican Chemical Society, 2006, 50 (4), 143-148
  86. Monajjemi ,M.; Mollaamin ,F. Journal of Computational and Theoretical Nanoscience,2012 ,9 (12) 2208-2214
  87. Monajjemi, M.; Mahdavian, L.; Mollaamin, F.; Honarparvar, B. Fullerenes, Nanotubes and Carbon Nanostructures, 2010, 18, 45–55
  88. Friedrich, B.; J.D. Weinstein.; R. Decarvalho .; J.M. Doyle.;. Trap. J. Chem. Phys. 1999, 110,2376-2383.
  89. Frischend, M.J.; J.B. Foresman, 1995. Gaussian 94 user’ reference (Gaussian, Inc., Pittsburgh).
  90. Ghalandari, B.; Monajjemi, M.; Mollaamin, F.; Journal of Computational and Theoretical Nanoscience, 2011 8, 1212–1219
  91. Monajjemi , M.; Khosravi , M.; Honarparvar, B.; Mollaamin, F.; International Journal of Quantum Chemistry, 2011, 111, 2771–2777
  92. Monajjemi, M.; Rajaeian, E.; Mollaamin, F. Physics and Chemistry of Liquids,2008, 46 299.
  93. Tahan, A .; Monajjemi, M. Acta Biotheor, 2011, 59, 291–312
  94. Monajjemi, M.; Farahani, N.; Mollaamin, F. Physics and Chemistry of Liquids, 2012, 50(2) 161–172
  95. Monajjemi, M.; Razavian, M.H.; Mollaamin,F.; Naderi,F.; Honarparvar,B.; Russian Journal of Physical Chemistry A , 2008 , 82 (13), 2277-2285
  96. Mollaamin , F.; Varmaghani , Z.; Monajjemi , M, Physics and Chemistry of Liquids. 2011, 49 318
  97. Monajjemi, M.; Honarparvar, B.; H. Haeri, H.; Heshmat, M.; Russian Journal of Physical Chemistry C, 2008, 80(1),S40-S44.
  98. Naghsh,F, oriental journal of chemistry, 2015, 31(1) 465-478
  99. Chitsazan, A, oriental journal of chemistry, 2015, 31(1) 393- 408


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.