ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039
     FacebookTwitterLinkedinMendeley

NMR and NBO investigation of Dopamine properties in point view of Brain activities

M. Mehdizadeh Barforushi*

Department of Chemistry, College of Basic Sciences, Tehran science and Research Branch, Islamic Azad University, Tehran, Iran

DOI : http://dx.doi.org/10.13005/ojc/300443

Article Publishing History
Article Received on :
Article Accepted on :
Article Published : 01 Jan 2015
Article Metrics
ABSTRACT:

Dopamine dosage is the main reason for panic, fear as well as exhilaration. In this study, it has been shown that the electron negativity of Cl, Br and F ions plays an important role in binding of these ions to dopamine receptors. The nervous quartiles effective drugs have been calculated via NMR and NBO approach.  Moreover, the HOMO-LUMO energy gap of dopamine and its halogenated derivatives have been calculated at the B3LYP/6-31G* level. These calculations are so important in order to investigate many other diseases since it can exhibit the ability and relation between electron acceptor represents and electron donation in any brain activities. Finally, the accuracy of calculated result has confirmed by comparing the results to the experimental data.

KEYWORDS:

Dopamine; NMR; NBO;Brain activity

Download this article as: 

Copy the following to cite this article:

Barforushi* M. M. NMR and NBO investigation of Dopamine properties in point view of Brain activities. Orient J Chem 2014;30(4).


Copy the following to cite this URL:

Barforushi* M. M. NMR and NBO investigation of Dopamine properties in point view of Brain activities. Available from: http://www.orientjchem.org/?p=6586


Introduction

Dopamine is a nervous transporter which has a key role in the central nervous system. This nervous transporter has an important role in the normal functions of brain such as learning, memorizing (storage ability in mind), controlling the noise level and adjusting character. Also do- pamine is the brain’s Cortex and this Cortex is responsible for human behaviors [1-9].

Through the decades, dopamine has been always attracted by scientists due to important roles in many diseases such as schizophrenia, Parkinson’s and depression (e.g. increase or decrease dopamine dosage in the body can cause disorder dopamine depression [10].However the structure and reactivity of this molecule has not been investigated thoroughly [11-13].

Understanding the structure, reactivity and stability of dopamine derivateis important for understanding the acting mechanism in the body since they determine the bonding ability to receptors. In this paper, the effect of electronegativity of atoms in the binding ability to receptors has been investigated in order to improve drug treatment of this common drug.For this purpose, the energy levels of dopamine molecules and electronegativity atoms such as chlorine, fluorine, bromine ions are calculated via NMR and NBO method [14-17].

Computational Methods

The structures of dopamine and halogenated derivatives were designed primarily using Chem. Bio Draw 12.0 (Scheme 1). The geometry of the systems has been optimized at the B3LYP /6-31G* computational level [18-20]. The optimization, NBO and NMR calculations of all systems are done by density functional theory (DFT) using B3 LYP method and the standard 6-31 G* basis set, by Gaussian 09 suit of programs (Gaussian 09, Revision A.02) in the gas phase [21-24].

Mullikan charges on the atoms, dipole moments, and geometry parameters such as bond lengths were also determined by the same method. The energy barrier for rotation around the tow bond in the dopamine moleculeis also assessed and the results are represented in Table1 and Figure1 [25-27].

Table 1.The calculated energy barrier of rotation around bonds C1-O10 and C2-O11

Rout 1

(C6-C1-O10-H21)

Rout 2

(C3-C2-O11-H22)

Angstroms and Degrees

E(k(cal/mol)

Angstroms and Degrees

E(k(cal/mol)

-15.2

-2.32175

-166.77

-8.09475

-0.202

-1.8825

13.22

-2.259

14.8

-2.32175

28.22

-1.69425

29.8

-1.69425

43.22

-0.94125

44.8

-0.94125

58.22

-0.251

59.8

-0.251

73.22

0

74.8

0

88.22

-0.31375

89.8

-0.43925

103.22

-1.19225

104.8

-1.44325

118.22

-1.8825

119.8

-3.07475

133.22

-4.518

134.8

-4.95725

148.22

-6.4005

149.8

-6.83975

163.22

-7.781

164.8

-8.22025

178.22

-8.4085

 

Results and Discussion

Energies

The EHOMO, ELUMO and HOMO-LUMO energygap (Eg; Δ) of dopamine and halogenated derivatives were calculated using the B3LYP method and 6-31G* basis set and the results are presented in Table 4-9 and Table S3-S8 (Supplementary materials) [28].

The energy levels are so important since the energy level for LUMO as an electron acceptor represents the ability to obtain an electron and the energy level of HOMOrepresentsthe ability to donate an electron. As shown in Table 4-9, the  molecule has the lowest energy gap is -175.7456 Kcal/mol and the dopamine molecule has the largest energy gap is-130.9417 Kcal/mol [29-31].

Geometries

The structures of dopamine and halogenated derivatives were designed primarily using of Chem. Bio Draw 12.0 in scheme 1 and the obtained results were compared to other derivate at the end. The optimization, NBO and NMR calculations of the whole systems are done by density functional theory (DFT) using B3LYP method and the standard 6-31G basis set using Gaussian 09. The optimized geometrical parameters, such as Dipole moment (Debye), energy of structure formation (HF;kcal/mol) and enthalpies (ΔH), Gibbs free energy (ΔG) are listed in Table 4-9.As shown in Table 4-9,the  molecule has the lowest ΔG is 72.059013Kcal/mol and the dopamine molecule has the largest ΔG is 91.416315 Kcal/mol. The  molecule has the lowestΔH is 102.29162 Kcal/mol and the dopamine molecule has the largest ΔH is 122.32726 Kcal/mol.

NMR

Nuclear magnetic resonance (NMR) is very powerful tool in studying microscopic phenomena in physics, chemistry, biology and medicine. Determination of spectral parameters using the quantum-chemistry methods helps in the assignment and interpretation of the experimental data[32]. In this study, NMR has been used for determination of microscopic properties of dopamine and it halogenated derivate [33-35].

To discuss the magnitude of the shielding tensor, it is necessary to report the three principal eigenvalues of the chemical shielding anisotropy tensor (σ11, σ22, σ33)using following equations:

a)  the isotropic value of the shielding tensor which is defined as:

 

formula1

b)  the anisotropy (Δσ) of the tensor, given by:

formula2

c)  the shielding tensor asymmetry parameter (η) given by

 

formula3

Table 2. Computed chemical shifts for selected atoms

structure

atom number

σ11

σ22

σ33

σiso

Δσ

C1

-6.7203

35.6456

129.586

52.8371

115.1234

-17.4526

17.9589

78.9894

26.4985

78.7362

-16.694

22.9613

76.7965

27.68793333

73.66285

-22.6423

57.3594

114.0318

49.58297

96.67325

3.7164

62.4586

123.6434

63.2728

90.5559

-25.6558

56.5618

110.3614

47.08913333

94.9084

11.7828

69.3353

126.8483

69.32213333

86.28925

C2

-4.2227

35.8531

130.5894

54.07326667

114.7742

-12.7193

18.0642

79.269

28.2

76.59

-8.3722

24.9618

21.9099

12.83316667

13.6151

-17.9397

59.6516

114.7442

52.15203

93.88825

8.0263

26.0354

122.4972

52.1863

105.4664

-20.9239

59.6319

111.1917

49.96656667

91.8377

29.0368

34.451

131.1433

64.87703

99.3994

C8

19.9281

32.2393

170.3295

74.16563333

144.2458

129.9135

36.9611

64.7332

143.86

31.29

130.0042

36.7783

64.3277

77.03673333

-19.06355

129.945

36.9932

164.9629

110.6337

81.4938

9.7885

36.8712

164.4894

70.38303

141.1596

129.7864

36.9806

165.0564

110.6078

81.6729

20.2364

31.8799

170.9779

74.36473333

144.91975

The isotropic chemical shielding σiso parameters are average of parameters, σ11, σ22 and σ33.

*Dop=dopamine

The optimization and NMR calculation are done by density functional theory (DFT) using B3LYP method and the standard 6-31G* basis set in the gas phase. Table 2 and 3 presents the computed chemical shift for selected hydrogen, nitrogen and carbon atoms. According to this Table, anisotropic shielding value (Δσ ) for C8 and N atom of F(OH)-Dopmolecule and N are negative values.Interestingly, among all of mentioned carbon atoms, C2 of F(OH)-Dophas the lowest isotropic shielding value. The κ, η  and charges values are summarized in Table S1 and S2 [36-38].

Table S1. Computed chemical shifts for selected atoms

structure

atom number

η

κ

charge

C1

0.552007

0.378372093

0.327738

0.674621696

0.48806174

0.581972

0.807502696

0.151672095

0.310302

1.241321

-0.17069

-0.07644

-1.6284

0.02036739

-0.111033

1.299425551

-0.208929459

0.048784

1.000457763

-0.000343283

0.047116

C2

0.52375621

0.405457

0.315797

0.60278251

0.595417964

0.003529

3.6724666

-1.201564621

0.305575

1.239633

-0.16957

-0.07595

-52.3018

0.685351

0.362558

1.315730904

-0.21947446

0.048189

0.081704

0.89395

0.328631

C8

0.128023138

0.836289

-0.128391

-13.8256

-4.052946663

-0.340644

7.335404476

-1.838942392

-0.133027

-1.710899479

6.308816348

-0.134595

-67.0237

0.64987

-0.13307

-1.70447

6.262591

-0.13434

0.1205167

0.845516994

-0.129605

 

Table S2. Computed chemical shifts for selected atoms

structure

atom number

η

κ

charge

N

-0.554212496

1.906395171

-0.714647

0.936090259

-3.280343256

-0.407913

3.760213469

-1.224908125

-0.715729

-1.86819

7.602459

-0.7154

-128.3092667

0.79741787

-0.715707

-1.86735

7.594614

-0.71544

-0.55607

1.91013

-0.71502

H19

0.43501

0.493439335

0.296342

0.634552

0.543629765

0.310717

0.642747705

0.294216612

0.298807

0.635069181

0.301175136

0.300622

10.1258

-0.417693114

0.298418

0.633387

0.302703

0.300477

0.432076

0.496426

0.297998

H20

0.743319474

0.20571089

0.290714

0.863861

0.199592525

0.2761

0.875599438

0.096295216

0.293655

0.881969434

0.091214448

0.294312

12.5714

-0.55916

0.293424

0.899

0.077713

0.294229

0.758255

0.192971

0.293085

 

Table 3. Computed chemical shifts for selected atoms

structure

atom number

σ11

σ22

σ33

σiso

Δσ

N

95.9945

29.4999

242.7177

122.7373667

179.9705

191.716

25.3634

41.97

219.68

33.43

190.9571

25.0724

41.8411

85.95686667

-66.17365

191.5971

25.4218

241.9345

152.9845

133.4251

0.6262

25.0737

241.9851

89.22833333

229.13515

191.5634

25.4276

241.9487

152.9799

133.4532

96.2871

29.4256

243.2144

122.9757

180.3581

H19

24.7994

28.992

41.3526

31.71467

14.4569

23.7725

29.4723

40.0824

31.1

13.46

23.8236

29.5709

40.1099

31.16813333

13.41265

23.7761

29.5058

40.1742

31.15203333

13.53325

3.8093

29.5853

40.1726

24.5224

23.4753

23.7379

29.4884

40.2316

31.15263

13.61845

24.719

28.9215

41.4097

31.6834

14.58945

H20

25.6399

31.2533

39.7743

32.2225

11.3277

25.2384

31.3865

38.977

31.86

10.66

25.2569

31.4527

38.9689

31.89283333

10.6141

25.2443

31.4942

38.9987

31.9124

10.62945

5.2442

31.5347

38.9681

25.249

20.57865

25.2012

31.5541

38.9776

31.91097

10.59995

25.4854

31.2492

39.7694

32.168

11.4021

The isotropic chemical shielding σiso parameters are average of parameters, σ11, σ22 and σ33.

*Dop=dopamine

Table 4 . Occupancy of natural orbitals (NBOs) and hybrids of dopamine calculated by the B3LYP method with 6-31G*(d) basis set.

Symbol

charge of nitrogen

∆G

∆H

Energy of band gap (kcal/mol)

E (kcal/mol)

Dipole

Moment(D

NBO a

Occupancy

E

Length(Å)

-0.714676

91.416315

122.32726

-130.9417

324198.48

1.3422

1.99428 -0.89263 1.367773
1.99428 -0.89158 1.368191
1.99352 -0.69245 1.466979
1.98953 -0.59715 1.018841
1.99081 -0.59666 1.019841
1.98816 -0.72203 0.969679
1.98812 -0.72117 0.969655
CR(1) N9 1.99967 -14.15973

CR(1) O10 1.99978 -18.97620

CR(1) O11 1.99978 -18.97565

LP(1) N9 1.96300 -0.29819

LP(1) O10 1.98058 -0.58666

LP(2) O10 1.87668 -0.30619

LP(1) O11 1.98052 -0.58625

 

 Table 5. Occupancy of natural orbitals (NBOs) and hybrids of fluorine derivativescalculated by the B3LYP method with 6-31G*(d) basis set Table5: Occupancy of natural orbitals (NBOs) and hybrids of fluorine derivativescalculated by the B3LYP method with 6-31G*(d) basis set 
Click here to View table

 

Table 6. Occupancy of natural orbitals (NBOs) and hybrids of chlorine derivatives calculated by the B3LYP method with 6-31G*(d) basis set Table6: Occupancy of natural orbitals (NBOs) and hybrids of chlorine derivatives calculated by the B3LYP method with 6-31G*(d) basis set

Click here to View table

 

 Table 7. Occupancy of natural orbitals (NBOs) and hybrids of chlorine derivatives calculated by the B3LYP method with 6-31G*(d) basis set Table7: Occupancy of natural orbitals (NBOs) and hybrids of chlorine derivatives calculated by the B3LYP method with 6-31G*(d) basis set 
Click here to View table

 

Table 8. Occupancy of natural orbitals (NBOs) and hybrids of bromine derivatives Table8: Occupancy of natural orbitals (NBOs) and hybrids of bromine derivatives 
Click here to View table

 

 Table 9. Occupancy of natural orbitals (NBOs) and hybrids of bromine derivatives Table9: Occupancy of natural orbitals (NBOs) and hybrids of bromine derivatives 
Click here to View table

 

NBO analysis

NBO method gives useful information about interactions in both filled and virtual orbital spaces which could enhance the analysis of intra and intermolecular interactions. This is carried out by considering all possible interactions between filled donor and empty acceptor NBOs and estimating their energy importance by second order perturbation theory [39].

NBO analysis is based on a method for optimally transforming a given wave function into localized form, corresponding to the one-center (“lone pairs”) and two-center (“bonds”) elements of the chemist’s Lewis structure picture. In NBO analysis, the input atomic orbital basis set is transformed via natural atomic orbitals (NAOs) and natural hybrid orbitals (NHOs) into natural bond orbitals (NBOs) [40-43].

 

Table S3. Occupancy of natural orbitals (NBOs) and hybrids of dopamine calculated by the B3LYP method with 6-31G*(d) basis set. TableS3: Occupancy of natural orbitals (NBOs) and hybrids of dopamine calculated by the B3LYP method with 6-31G*(d) basis set. 

Click here to View table

 

 Table S4. Occupancy of natural orbitals (NBOs) and hybrids of fluorine derivativescalculated by the B3LYP method with 6-31G*(d) basis set TableS4: Occupancy of natural orbitals (NBOs) and hybrids of fluorine derivativescalculated by the B3LYP method with 6-31G*(d) basis set 

Click here to View table

 

Table S5. Occupancy of natural orbitals (NBOs) and hybrids of chlorine derivatives calculated by the B3LYP method with 6-31G*(d) basis set TableS5: Occupancy of natural orbitals (NBOs) and hybrids of chlorine derivatives calculated by the B3LYP method with 6-31G*(d) basis set 

Click here to View table

 

 Table S6. Occupancy of natural orbitals (NBOs) and hybrids of chlorine derivatives calculated by the B3LYP method with 6-31G*(d) basis set TableS6: Occupancy of natural orbitals (NBOs) and hybrids of chlorine derivatives calculated by the B3LYP method with 6-31G*(d) basis set 
Click here to View table

 

Table 4-9 lists the calculated occupancies of natural orbitals. The calculated Natural bond hybrids and are also given in this table [44-46].

Table S3-S8 show share of orbitals contribute in the bonds (BD for 2-center bond).

Table S7. Occupancy of natural orbitals (NBOs) and hybrids of bromine derivatives TableS7: Occupancy of natural orbitals (NBOs) and hybrids of bromine derivatives 

Click here to View table

 

According to calculations, the nitrogen atom forms three single bond (sigma bond)  with two hydrogen atoms H19 and H20 ( σN19 -H19 and  σN19 – H20), and a carbon atom C8 (σC8 – N19 ) and a lon pair orbital (Lp). As seen from Table S3-S8, the LP on the nitrogen atom is formed from an sp3.62 hybrid for the  molecule, sp4.15hybrid for the  molecule, sp3.63 For the molecule, sp4.15hybrid for the  molecule, sp4.15hybrid For the molecule,sp3.65hybrid for the  molecule, andsp3.63 hybrid For the molecule [47].

 Table S8. Occupancy of natural orbitals (NBOs) and hybrids of bromine derivatives TableS8: Occupancy of natural orbitals (NBOs) and hybrids of bromine derivatives 

Click here to View table

 

Conclusion

In the present work, atheoretical analysis of dopamine and its halogenated derivate has been performed in order to obtain the dipole moment (µ) and energy of structure formation (HF)of dopamine and it halogenated derivate. Also the thermodynamic parameters of this compound has been studied and according to the results, it has been found that the amount of Gibbs free energy(ΔG) and standard enthalpies (ΔH) of dopamine and its halogenated derivatearepositive value, therefore dopamine and its halogenated derivateareunstable structure. Moreover, the chemical shifts of these molecules have been simulated using quantum mechanics.Finally, the Natural Bond Orbital (NBO) analysis has provided the detailed insight into the type of hybridization and the nature of bonding in dopamine and its halogenated derivate.

References

  1. Dahlstrom and Fuxe., 1964 A. Dahlstrom, K. Fuxe Localization of monoamines in the lower brain stem Experientia (1964)15, 398–399.
  2. Tierney et al., 2000 L. Tierney, S. McPhee, M. Papadakis, DiagnósticoClínico y Tratamiento CAP.24, 25 y 26. Quinta  Edic. Edit. El Manual Moderno, 2000, pp. 965-967
  3. Abdel-Baki et al., 2012 A. Abdel-Baki, C. Ouetllet-Plamondon, A. Malla. Journal of Affective Disorders 138 (2012)S3.
  4. Santos-García et al.,2012 D. Santos-García, M. Prieto-Formoso, R. de la Fuente-Fernández, Journal of Neurological Science 318 (2012) 91.
  5. Monajjemi,M. Honarparvar, B. H. Haeri, H. Heshmat ,M. (2006) ,Chemistry C.,80(1):S40-S44.
  6. F. Mollaamin , M. Monajjemi  & J. Mehrzad , Fullerenes, Nanotubes, and Carbon Nanostructures, 22: 738–751, 2014
  7. M. Monajjemi   , N. Karachi   & F. Mollaamin, Fullerenes, Nanotubes, and Carbon Nanostructures, 22(7): 643–662, 2014
  8. A. Tahan and M. Monajjemi,ActaBiotheor (2011) 59:291–312
  9. M. Monajjemi   , A. Sobhanmanesh& F. Mollaamin , Fullerenes, Nanotubes, and Carbon Nanostructures, 21(1): 47–63, 2013
  10. Nicola et al., 2000 S.M.Nicola, J.Surmeier, R.C.Malenka, Annu Rev Neurosci, 23:185-215.
  11. Majid Monajjemi, Robert Wayne, JrandJames E. Boggs, Chemical Physics ,433 (2014),1-11.
  12. T. Ardalan  , P. Ardalan& M. Monajjemi,Fullerenes, Nanotubes, and Carbon Nanostructures, 22: 687-708, 2014
  13. Majid Monajjemi and  Fatemeh Mollaamin ,J Clust Sci (2012) 23:259–272
  14. M. Monajjemi  ; H. Chegini  ; F. Mollaamin, P. Farahani, Fullerenes, Nanotubes, and Carbon Nanostructures, 19 (5): 469–482, 2011
  15. F. Mollaamin   , M. Monajjemi   & J. Mehrzad , Fullerenes, Nanotubes, and Carbon Nanostructures, 22 (8): 738–751, 2014
  16. M. Monajjemi   , H. Yamola& F. Mollaamin, Fullerenes, Nanotubes, and Carbon Nanostructures, 22(6): 595–603, 2014
  17. H. Yahyaei& M. Monajjemi,Fullerenes, Nanotubes, and Carbon Nanostructures, 22(4): 346–361, 2014
  18. Van Valkenburg, Jacques van der Krogt, P. Moleman, H. van Berkum, U. Tjaden,J. de Jong, Journal of Neuroscience Methods 11 (1984) 29.
  19. Thierry et al., 1994 A.M. Thierry, T.M.Jay, S.Pirot, J.Mantz, R.Godbout, J.Glowinski, Influence of afferent systems on the activity of the rat prefrontal cortex: Electrophysiological and pharmacological characterization. In: Motor and Cognitive Functions of the Prefrontal Cortex. (Thierry A.M., Glowinski J., Goldman- Rakic P.S., Christen Y., eds), pp 35-50. NewYork: Springer-Verlag.
  20. Frisch et al., 1984 M.J,Frisch, J.A.Pople, J.S.Binkley. J. Chem. Phys. 1984, 80, 3265.
  21. Gaussian 09, Revision A.02, M. J. Frisch et al. Gaussian, Inc., Walling ford CT, 2009.
  22. M. Monajjemi, J.E Boggs, J. Phys. Chem A. 117 (2013) 1670.
  23. Fatemeh Mollaamin and Majid Monajjemi ,J. Comput. Theor.Nanosci. 9, 597-601 (2012)
  24. M. Monajjemi, V. S. Lee, M. Khaleghian, B. Honarparvar, F.Mollaamin, J. Phys. Chem C., 114(2010) 15315.
  25. Majid Monajjemi, Chemical Physics,425 (2013),29-45.
  26. H. Yahyaei  , M. Monajjemi , H. Aghaie, and K. Zare , Journal of Computational and Theoretical Nanoscience Vol. 10, No.10, 2332–2341, 2013.
  27. M. Monajjemi, Struct Chem., 23 (2012) 551-580.
  28. M. Monajjemi, M. Jafari Azan  & F. Mollaamin,Fullerenes, Nanotubes, and Carbon Nanostructures, 21 (6) : 503–515, 2013
  29. M. Monajjemi,S.Afsharnezhad,M.R.Jaafari,T.Abdolahi,A.Nikosade and H.Monajemi.Russian Journal of physical chemistry A, 2007(2),1956-1963.
  30. Fatemeh Mollaamin  & Majid Monajjemi, Physics and Chemistry of Liquids, 50 (5) 2012, 596–604
  31. M. Monajjemi    , R. Faham   & F. Mollaamin , Fullerenes, Nanotubes, and Carbon  Nanostructures, 20 (2): 163–169, 2012
  32. Vaara 2001 J.Vaara, Theory and calculations of NMR and EPR parameters CSC Report on Scientific Coputing 1999-2000.
  33. M. Monajjemi ; L. Mahdavian ; F. Mollaamin ; B. Honarparvar,Fullerenes, Nanotubes and Carbon Nanostructures, 18: 45–55, 2010
  34. F. Mollaamin,  K. Shahani pour, K. Shahani pour, A. R. Ilkhani, Z. Sheckari,d and M.Monajjemi,61(12) 2012,2193-2198 .
  35. M. Monajjemi , M. SeyedHosseini& F. Molaamin,Fullerenes, Nanotubes, and Carbon Nanostructures, 21: 381–393, 2013
  36. M. Monajjemi & M. Falahati & F. Mollaamin, Ionics (2013) 19:155–164
  37. F. Mollaamin, J. Najafpour, S. Ghadami, A. R. Ilkhani, M. S. Akrami, and M. Monajjemi,J. Comput. Theor.Nanosci. 11, 1290-1298 (2014)
  38. M. Monajjemi  , N. Farahani , and F. Mollaamin , Physics and Chemistry of Liquids, 50 (2), 2012, 161–172
  39. Reed et al., 1988 A.E.Reed, L.A.Curtiss, F.Weinhold, Chem Rev, 88 (1988) 899.
  40. Glendening et al., E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold. Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706.
  41. Majid Monajjemi and Fatemeh Mollaamin ,J. Comput. Theor.Nanosci. 9, 2208-2214 (2012)
  42. F.Mollaamin,M.T.Baei,M.Monajjemi,R.Zhiani,B.Honarparvar, Russian Journal of Physical Chemistry A 82 (13), pp. 2354-2361,2008
  43. M. Monajjemi,  H. Baheri,  and F. Mollaamin, Journal of Structural Chemistry. 52(1) 54-59, 2011.
  44. M.Monajjemi,L.Mahdavian,F,Mollaamin, Bull  Chem.Soc.Ethiop ,2008,22(2),1-10.
  45. F. Mollaamin, Z. Varmaghani , and M. Monajjemi, Physics and Chemistry of Liquids. 49(3), 2011, 318–336
  46. Majid Monajjemi, FatemehMollaamin , TaherehKarimkeshteh , J. Mex. Chem. Soc. 2005, 49(4), 336-340.
  47. M. Monajjemi  , J. Najafpour  & F. Mollaamin,Fullerenes, Nanotubes, and Carbon Nanostructures, 21: 213–232, 2013


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.