Quantum mechanical investigation of bond gaps of π-acceptor complex alone and affected nanoring field
Mehrnoosh Khaleghian1*, Gholamreza Ghashami2
1 Department of Chemistry, Eslamshahr Branch, Islamic Azad University, Tehran, Iran 2 Department of Engineering, Eslamshahr Branch, Islamic Azad University, Tehran, Iran
DOI : http://dx.doi.org/10.13005/ojc/300247
Article Received on :
Article Accepted on :
Article Published : 26 May 2014
We studied non-bonded interaction of the [Co(CN)6]3- complex Situated B24N24 nanoring. Early, the geometry of [Co(CN)6]3- and B24N24 have been optimized at B3LYP method with Def2-SV(P)/ LANL2DZ(ECP) and EPR-II basis set respectively. To confirmation the structural stability of the B24N24-[Co(CN)6]3- nano system, delocalization of electrons between donor and acceptor bonds and LUMO and HOMO for the lowest energy have been computed by DFT/ B3LYP method. Then we investigated NBO data such as coefficients and hybrids of orbitals, second order perturbation theory analysis of fock matrix, and ΔE in different loops of the nanoring have been calculated at B3LYP method.
KEYWORDS:DFT; ECP; EPR-II basis set; HOMO; LUMO; NICS
Download this article as:
Copy the following to cite this article: Khaleghian M, Ghashami G. Quantum mechanical investigation of bond gaps of π-acceptor complex alone and affected nanoring field. Orient J Chem 2014;30(2). |
Copy the following to cite this URL: Khaleghian M, Ghashami G. Quantum mechanical investigation of bond gaps of π-acceptor complex alone and affected nanoring field. Orient J Chem 2014;30(2). Available from: http://www.orientjchem.org/?p=3470 |
INTRODUCTION
There has been a noticeable regard in experimental researches of BnNm nanoring. BnNn have been provided by reaction of BCl3 with NH3 in a laser beam [1,2]. The experimental data of synthesis and various spectrometers are requirement to guess structural stabilities and consider physical chemistry properties of such molecules of B24C12N24 molecule [3] and the B12N12, B16N16 and B28N28 molecules [4-6]. In present work we have utilize single wall B24N24 borane nitride nanoring. The schematic of B24N24 is displayed in the Figure 1. After valence bond theory was corroborated, Molecular orbital theory had been prospered. Thus, we presentation the non-bonded interaction of the [Co(CN)6]3- Situated B24N24 nano ring. The basically purpose of this investigation was the study of the electromagnetic interactions within the B24N24-[Co(CN)6]3- system. For further evaluation about electromagnetic interactions, stability structure of [Co(CN)6]3- complex affected various loops of nanoring have been computed. For further structural data, bond gaps and the hybrids on atom have been reported to estimate the structural ability of the [Co(CN)6]3- to make a stable B24N24– [Co(CN)6]3– system.
COMPUTATIONAL DETAILS
To determination electromagnetic interactions of the [Co(CN)6]3- complex inclusive Co (III) and six π-acceptor ligands, the geometry of the [Co(CN)6]3- was optimized at DFT/B3LYP method with Def2-SV(P) basis set and LANL2DZ Effective Core Potential. Also, the geometry of the mix of B24N24 nanoring and [Co(CN)6]3- complex was optimized at DFT/B3LYP method with EPR-II basis set. Thermochemical properties were determined at B3LYP/EPR-II basis set to analyze the enthalpies and Gibbs free energies [7]. The natural bond orbital (NBO) calculations [8,9] has been used to theoretical predictions the intermolecular orbital interactions in the [Co(CN)6]3- and B24N24-[Co(CN)6]3- [10] . So, NBO data including coefficients and hybrids of orbitals of atoms, donor-acceptor bonds and ΔE in [Co(CN)6]3- complex affected various loops of the B24N24 nanoring have been determined.
RESULT AND DISCUTION
To calculate the non-bonded interaction of B24N24-[Co(CN)6]3- nano system, the structure of the B24N24 have been optimized at B3LYP/EPR-II basis set and structure of the [Co(CN)6]3- complex including cyanide that known as six π-acceptor ligands, have been optimized at B3LYP/Def2-SV(P) basis set and LANL2DZ ECP. The non-bonded electromagnetic interactions of the [Co(CN)6]3-complex Situated nanoring have been investigated at B3LYP in different loops of the B24N24 nanoring. Optimized parameters of [Co(CN)6]3- consists bond lengths and bond angles have been reported in Table 1.
Table 1. Optimal quantities of [Co(CN)6]3-.
[Co(CN)6]3- | Co(1)-C(2) | 1.957632 | – |
Co(1)-C(3) | 1.958069 | – | |
Co(1)-C(4) | 1.957556 | – | |
Co(1)-C(5) | 1.957584 | – | |
Co(1)-C(6) | 1.957485 | – | |
Co(1)-C(7) | 1.957629 | – | |
C(2)-N(11) | 1.180025 | – | |
C(3)-N(8) | 1.179911 | – | |
C(4)-N(12) | 1.179998 | – | |
C(5)-N(10) | 1.180055 | – | |
C(6)-N(13) | 1.179861 | – | |
C(7)-N(9) | 1.180024 | – | |
C(2)-Co(1)-C(3) | – | 90.02 | |
C(2)-Co(1)-C(4) | – | 90.0163 | |
C(2)-Co(1)-C(5) | – | 89.9842 | |
C(2)-Co(1)-C(6) | – | 89.9782 | |
C(2)-Co(1)-C(7) | – | 179.9811 | |
C(3)-Co(1)-C(4) | – | 89.817 | |
C(3)-Co(1)-C(5) | – | 90.1773 | |
C(3)-Co(1)-C(6) | – | 179.9773 | |
C(3)-Co(1)-C(7) | – | 89.9877 | |
C(4)-Co(1)-C(5) | – | 179.9942 | |
C(4)-Co(1)-C(6) | – | 89.9782 | |
C(4)-Co(1)-C(7) | – | 89.9665 | |
C(5)-Co(1)-C(6) | – | 89.8001 | |
C(5)-Co(1)-C(7) | – | 90.033 | |
C(6)-Co(1)-C(7) | – | 90.014 |
See Figure 1 for more details.
We can get all of the Co-C bond lengths are the same in values and all of the C-N bond lengths are same to other, because the octahedral compounds that are Low-spin d6 electronic configuration such as Co (III) with six π-acceptor ligands no indicate the Jahn–Teller distortion. But the octahedral compounds that are High-spin d6 electronic configuration such as Co (III) with six π-donor ligands indicate the Jahn–Teller distortion [11]. Pursuant the occupancy and energy values of Co (III) metal in Table 2,
Table 2. Natural atomic orbitals of [Co(CN)6]3-complex.
Natural atomic orbital | |||
Atom | [CoF6]3- | ||
Atomic Orbital | Occupancy | Energy | |
Co3+ (1) |
4s |
0.46228 | 2.90416 |
3dyz | 1.84859 | 0.10792 | |
3dxy | 1.73218 | 0.11879 | |
3dz2 |
1.68785 | 0.12323 | |
3dx2y2 | 1.41028 | 0.14943 | |
3dxz | 1.06674 | 0.18220 | |
C (2) | 2s | 1.25718 | 0.22394 |
2px | 0.82429 | 0.33754 | |
2py | 0.98223 | 0.48570 | |
2 pz | 0.81132 | 0.32525 | |
C (3) | 2s | 1.25730 | 0.22404 |
2px | 0.89856 | 0.40722 | |
2py | 0.81923 | 0.33271 | |
2 pz | 0.89995 | 0.40823 | |
C (4) | 2s | 1.25716 | 0.22399 |
2px | 0.89507 | 0.40400 | |
2py | 0.81626 | 0.32990 | |
2 pz | 0.90656 | 0.41453 | |
C (5) | 2s | 1.25716 | 0.22389 |
2px | 0.89526 | 0.40429 | |
2py | 0.81626 | 0.32996 | |
2 pz | 0.90628 | 0.41436 | |
C (6) | 2s | 1.25697 | 0.22387 |
2px | 0.89884 | 0.40752 | |
2py | 0.81930 | 0.33276 | |
2 pz | 0.89969 | 0.40810 | |
C (7) | 2s | 1.25717 | 0.22396 |
2px | 0.82428 | 0.33752 | |
2py | 0.98225 | 0.48576 | |
2 pz | 0.81131 | 0.32525 | |
N (8) | 2s | 1.58723 | -0.18862 |
2px | 1.40270 | 0.20756 | |
2py | 1.24637 | 0.24158 | |
2 pz | 1.40643 | 0.20663 | |
N (9) | 2s | 1.58725 | -0.18838 |
2px | 1.25623 | 0.23963 | |
2py | 1.56854 | 0.17157 | |
2 pz | 1.23059 | 0.24522 | |
N (10) | 2s | 1.58726 | -0.18837 |
2px | 1.39603 | 0.20922 | |
2py | 1.24036 | 0.24311 | |
2 pz | 1.41899 | 0.20415 | |
N (11) | 2s | 1.58725 | -0.18841 |
2px | 1.25623 | 0.23960 | |
2py | 1.56853 | 0.17156 | |
2 pz | 1.23061 | 0.24519 | |
N (12) | 2s | 1.58724 | -0.18845 |
2px | 1.39563 | 0.20925 | |
2py | 1.24032 | 0.24305 | |
2 pz | 1.41942 | 0.20395 | |
N (13) | 2s | 1.58716 | -0.18836 |
2px | 1.40311 | 0.20764 | |
2py | 1.24641 | 0.24176 | |
2 pz | 1.40595 | 0.20693 |
we can get that 3dyz , 3dxy , 3dz2 orbitals include two electrons and the least value of energy. The other d orbitals and 4s orbital include no electron. Also, Pursuant the occupancy and energy values of 6 π-acceptor ligands it was demonstrated that 2s orbital of N atom participate to creation the σ molecular orbitals and one non bonding electron pairs of N situate in 2p orbital that has higher energy level. For instance, in N(8) and N(13) that are in same position relative to the Co (III), 2py has a higher energy levels and 2px and 2pz have lower energy levels. In addition, pursuant Table 2 data, atom pairs N(8)-N(13), N(9)-N(11), N(10)-N(12) in [Co(CN)6]3- complex that are in same position relative to Co (III), have the same occupancy and energy levels (Fig. 1).
![]() |
Fig 1:Optimal structure of [Co(CN)6]3- stand alone and situated B24N24 nanoring. Click here to View Figure |
The energy level difference of metal-ligands bonding in [Co(CN)6]3- complex have been reported in Table 3.
Table 3. Molecular orbital diagram of [Co(CN)6]3-complex.
Compound | Molecular orbital diagram | |||
Natural Bond Orbitals | Occupancy | Energy (a.u.) | ||
[Co(CN)6]3- | BD*( 1)Co 1- C 6 | π* t1u | 0.43225 | 1.40362 |
BD*( 1)Co 1- C 5 | σ* t2g | 0.43283 | 1.40319 | |
BD*( 3) C 5- N10 | n.b. | 0.05113 | 0.50551 | |
BD*( 3) C 6- N13 | n.b. | 0.05112 | 0.50548 | |
BD*( 3) C 7- N 9 | n.b. | 0.05105 | 0.50547 | |
BD*( 3) C 2- N11 | n.b. | 0.05105 | 0.50546 | |
BD*( 3) C 3- N 8 | n.b. | 0.05107 | 0.50544 | |
BD*( 3) C 4- N12 | n.b. | 0.05113 | 0.50543 | |
LP ( 1) C 3 | σ* a1g | 1.50469 | 0.35364 | |
LP ( 1) C 7 | π t1u | 1.50443 | 0.35360 | |
LP ( 1) C 4 | σ* eg | 1.50444 | 0.35359 | |
LP ( 1)Co 1 | π t2g | 1.91544 | 0.10051 | |
BD ( 1)Co 1- C 5 | σ eg | 1.91189 | -0.05029 | |
BD ( 1)Co 1- C 2 | σ t1u | 1.91190 | -0.05030 | |
BD ( 1)Co 1- C 6 | σ a1g | 1.91188 | -0.05039 | |
Δoct | 0.25308 a.u. |
We can understand, the size of Δo is determined by the ligand field strength. (CN)– ligand isa strong field ligand that increase Δo more than F– ligand as weak field ligand. Determination of second order perturbation theory analysis of fock matrix of C and N atoms at the level of B3LYP/EPR-II basis set and Co (III) atom at the level of B3LYP/ Def2-SV(P)/LANL2DZ (ECP) have been shown in Table 4. Also Bond orbital,
Table 4. Natural bond orbital (NBO) analysis of [Co(CN)6]3-.
compound | Natural bond orbital (NBO) analysis | ||||
[Co(CN)6]3- | Donor NBO (i) | Acceptor NBO (j) | E(2)kcal/mol | E(j)-E(i)a.u. | F(i,j)a.u. |
BD ( 1)Co 1- C 2 | BD*( 1)Co 1- C 5 | 1.65 | 1.45 | 0.048 | |
BD ( 1)Co 1- C 2 | BD*( 1)Co 1- C 6 | 1.65 | 1.45 | 0.048 | |
BD ( 1)Co 1- C 2 | BD*( 3) C 6- N13 | 2.23 | 0.56 | 0.032 | |
BD ( 1)Co 1- C 5 | BD*( 1)Co 1- C 6 | 1.66 | 1.45 | 0.048 | |
BD ( 1)Co 1- C 5 | BD*( 3) C 2- N11 | 1.24 | 0.56 | 0.024 | |
BD ( 1)Co 1- C 6 | BD*( 1)Co 1- C 5 | 1.67 | 1.45 | 0.048 | |
BD ( 1)Co 1- C 6 | BD*( 3) C 2- N11 | 1.06 | 0.56 | 0.022 | |
BD ( 1)Co 1- C 6 | BD*( 3) C 5- N10 | 2.27 | 0.56 | 0.032 | |
BD ( 2) C 6- N13 | BD*( 3) C 5- N10 | 0.6 | 0.43 | 0.014 | |
LP ( 1)Co 1 | BD*( 3) C 6- N13 | 2.04 | 0.4 | 0.026 | |
BD ( 1)Co 1- C 5 | BD*( 3) C 3- N 8 | 2.25 | 0.56 | 0.032 | |
LP ( 1)Co 1 | BD*( 3) C 3- N 8 | 0.13 | 0.4 | 0.007 | |
BD ( 1)Co 1- C 2 | BD*( 3) C 4- N12 | 2.29 | 0.56 | 0.032 | |
LP ( 1)Co 1 | BD*( 3) C 4- N12 | 1.59 | 0.4 | 0.023 | |
BD ( 1)Co 1- C 5 | BD*( 3) C 7- N 9 | 1.3 | 0.56 | 0.024 | |
BD ( 1)Co 1- C 6 | BD*( 3) C 7- N 9 | 1.02 | 0.56 | 0.021 | |
LP ( 1)Co 1 | BD*( 2) C 7- N 9 | 3.73 | 0.4 | 0.035 | |
LP ( 1) C 3 | BD*( 1)Co 1- C 5 | 345.09 | 1.05 | 0.546 | |
LP ( 1) C 3 | BD*( 1)Co 1- C 6 | 585.34 | 1.05 | 0.711 | |
LP ( 1) C 3 | BD*( 3) C 2- N11 | 4.15 | 0.15 | 0.025 | |
LP ( 1) C 3 | BD*( 3) C 5- N10 | 10.16 | 0.15 | 0.04 | |
LP ( 1) C 3 | BD*( 3) C 7- N 9 | 3.82 | 0.15 | 0.024 |
Coefficients and Hybrids of [Co(CN)6]3- complex have been shown in Table 5.
Table 5. Bond orbital, Coefficients, Hybrids of [Co(CN)6]3- at NBO studies.
Compound | Natural bond orbital (NBO) analysis | |
Bond orbital | Coefficients/ Hybrids | |
[Co(C)6]3- | BD ( 1)Co 1- C 2 |
0.5127*Co 1(sp 0.00d 2.00 )+ 0.8586*C 2(sp 0.79d 0.00) |
BD ( 1)Co 1- C 5 | 0.5127*Co 1(sp 0.00d 2.00 )+ 0.8585*C 5(sp 0.79d 0.00) | |
BD ( 1)Co 1- C 6 | 0.5128*Co 1(sp 0.00d 2.00 )+ 0.8585*C 6(sp 0.79d 0.00) | |
LP ( 1)Co 1 | (sp 0.00d 1.00) | |
LP ( 1) C 3 | (sp 1.10d 0.00) | |
BD*( 1)Co 1- C 5 | 0.8585*Co 1(sp 0.00d 2.00 )-0.5127*C 5(sp 0.79d 0.00) | |
BD*( 1)Co 1- C 6 | 0.8585*Co 1(sp 0.00d 2.00 )-0.5128*C 6(sp 0.79d 0.00) | |
BD*( 3) C 2- N11 |
0.7800*C 2(sp 1.00d 0.00 )-0.6258*N11(sp 1.00d 0.00) |
|
BD*( 3) C 3- N 8 | 0.7800*C 3(sp 1.00d 0.00 )-0.6258*N 8(sp 1.00d 0.00) | |
BD*( 3) C 4- N12 | 0.7800*C 4(sp 1.00d 0.00 )-0.6258*N12(sp 1.00d 0.00) | |
BD*( 3) C 5- N10 | 0.7800*C 5(sp 1.00d 0.00 )-0.6258*N10(sp 1.00d 0.00) | |
BD*( 3) C 6- N13 | 0.7800*C 6(sp 1.00d 0.00 )-0.6258*N13(sp 1.00d 0.00) | |
BD*( 3) C 7- N 9 | 0.7800*C 7(sp 1.00d 0.00 )-0.6258*N 9(sp 1.00d 0.00) |
In accordance with data of Table 5, we can get that the bonding and anti-bonding coefficients of orbitals of Co-C and Co-N bonds were 0.8 and 0.7 respectively. To calculation non-bonded interaction of the [Co(CN)6]3- complex Situated in nanoring field, we attend on the B24N24 nanoring and optimized structure of the B24N24-[Co(CN)6]3- system have been displayed in Fig.1. The geometry of B24N24 nano ring has been optimized at B3LYP method with EPR-II basis set. According to the frequency calculation for B24N24 nano rings, thermochemical quantities were equal to ΔG= -97.6323205765 kcal/mol and ΔH= -166.384143925 kcal/mol, corroborated the structural stability of nano rings. Dipole moments of alone complex and complex affected various loops of nanoring have been shown in Table 6
Table 6. Changes in the relative energies (ΔE), dipole moment (r), nuclear repulsion energy and bond gap of alone [Co(CN)6]3- and affected various loops of B24N24 .
Compound | Basis sets for Co3+ | ||||
B24N24-[Co(CN)6]3- | Def2-SV(P) , LANL2DZ ECP | ||||
band gap (Hartree) | ΔE (Hartree) | Dipole moment(Debye) | NICS | nuclear repulsion energy (Hartree) | |
[Co(CN)6]3- | 0.25308 | -701.17098 | 0.0017 | * | 748.95533 |
loop 1-[Co(CN)6]3- | 0.02448 | -940.01508 | 4.9114 | -10.1058 | 1219.24152 |
loop 2-[Co(CN)6]3- | 0.0329 | -940.03334 | 5.3568 | -10.1189 | 1212.20610 |
loop 3-[Co(CN)6]3- | 0.0237 | -940.01497 | 5.0787 | -10.1058 | 1219.24129 |
loop 4-[Co(CN)6]3- | 0.03195 | -940.03336 | 5.3016 | -10.1189 | 1212.20822 |
loop 5-[Co(CN)6]3- | 0.03372 | -940.01429 | 5.5595 | -10.1058 | 1219.25988 |
loop 6-[Co(CN)6]3- | 0.03481 | -940.03316 | 5.5523 | -10.1189 | 1212.18374 |
loop 7-[Co(CN)6]3- | 0.02262 | -940.01477 | 4.6646 | -10.1058 | 1219.25565 |
loop 8-[Co(CN)6]3- | 0.0313 | -940.03326 | 5.3537 | -10.1189 | 1212.18442 |
The geometry of mix of B24N24 and [Co(CN)6]3- complex have been optimized at B3LYP method with EPR-II basis set for B,N,C atoms and Def2-SV(P) basis set and LANL2DZ ECP for Co (III). According to the electron paramagnetic resonance (EPR) calculate, it is noteworthy that the energy obtained from the mentioned basis set and ECP for alone B24N24 nanoring and alone [Co(CN)6]3- complex were equal to -1911.727563 and -701.1710148 (Hartree) respectively. To describes the non-bonded interaction of [Co(CN)6]3- affected eight various loops of B24N24 nano ring, we focus on quantities values such as the relative energies (ΔE), dipole moment (r), nuclear repulsion energy, NICS and bond gap that mentioned values have been displayed in Table 6. Atomic charge is the physical property of matter that causes it to experience a force when close to other electrically charged matter. So, total atomic charge of alone [Co(CN)6]3- complex atoms and under different loops of B24N24 nanoring, have been reported in Table 7
Table 7. Total atomic charges of alone [Co(CN)6]3- and affected various loops of B24N24 .
Compound | Basis sets for Co3+ | ||||||||||||
Def2-SV(P) , LANL2DZ ECP | |||||||||||||
Total atomic charges | |||||||||||||
[Co(CN)6]3- | Co (1) | C(2) | C(3) | C(4) | C(5) | C(6) | C(7) | N(8) | N(9) | N(10) | N(11) | N(12) | N(13) |
2.560 | -0.343 | -0.345 | -0.344 | -0.343 | -0.342 | -0.343 | -0.582 | -0.5829 | -0.582 | -0.582 | -0.582 | -0.583 | |
B24N24-[Co(CN)6]3- | Co (49) | C(50) | C(51) | C(52) | C(53) | C(54) | C(55) | N(56) | N(57) | N(58) | N(59) | N(60) | N(61) |
loop 1-[Co(CN)6]3- | 2.6770 | -0.388 | -0.267 | -0.394 | -0.378 | -0.744 | -0.388 | -0.576 | -0.551 | -0.559 | -0.551 | -0.548 | -0.131 |
loop 2-[Co(CN)6]3- | 2.6006 | -0.363 | -0.370 | -0.335 | -0.457 | -0.401 | -0.363 | -0.552 | -0.551 | -0.394 | -0.551 | -0.557 | -0.504 |
loop 3-[Co(CN)6]3- | 2.6786 | -0.386 | -0.379 | -0.266 | -0.743 | -0.391 | -0.387 | -0.559 | -0.551 | -0.132 | -0.553 | -0.575 | -0.550 |
loop 4-[Co(CN)6]3- | 2.6020 | -0.362 | -0.457 | -0.370 | -0.401 | -0.335 | -0.362 | -0.395 | -0.552 | -0.505 | -0.552 | -0.553 | -0.557 |
loop 5-[Co(CN)6]3- | 2.6802 | -0.391 | -0.747 | -0.380 | -0.395 | -0.271 | -0.390 | -0.125 | -0.545 | -0.544 | -0.541 | -0.554 | -0.570 |
loop 6-[Co(CN)6]3- | 2.5993 | -0.363 | -0.402 | -0.456 | -0.336 | -0.370 | -0.363 | -0.500 | -0.550 | -0.555 | -0.550 | -0.395 | -0.550 |
loop 7-[Co(CN)6]3- | 2.6779 | -0.386 | -0.392 | -0.747 | -0.268 | -0.379 | -0.385 | -0.551 | -0.555 | -0.580 | -0.553 | -0.130 | -0.559 |
loop 8-[Co(CN)6]3- | 2.5979 | -0.361 | -0.334 | -0.400 | -0.367 | -0.453 | -0.361 | -0.557 | -0.553 | -0.554 | -0.553 | -0.505 | -0.397 |
Also, Bond Length, Total atomic charges and Dipole orientation of atoms of different loops of nanorings have been displayed in Table 8.
Table 8. Bond Length, Atomic charges and Dipole orientation of the sides of various loops of B24N24.
Compound | Basis sets of Co (III) | ||||
B24N24-[Co(CN)6]3- | Def2-SV(P) , LANL2DZ ECP | ||||
Bond ID | Bond Length(Å) | Total atomic charges | Dipole orientation | ||
θ | |||||
φ | |||||
loop 1 | B(1) | r 1-2 | 1.303 | 0.029792 | 90.0174.2630 |
N(2) | r 1-32 | 1.417 | -0.059818 | ||
B(3) | r 2-3 | 1.466 | 0.030860 | ||
N(32) | r 3-34 | 1.466 | -0.166730 | ||
B(33) | r 32-33 | 1.417 | 0.029797 | ||
N(34) | r 33-34 | 1.303 | -0.059851 | ||
loop 2 | N(4) | r 4-5 | 1.417 | -0.143033 | 90.0147.1122 |
B(5) | r 4-35 | 1.417 | -0.003640 | ||
N(6) | r 5-6 | 1.303 | -0.036094 | ||
B(7) | r 6-7 | 1.466 | 0.025729 | ||
B(35) | r 7-36 | 1.466 | -0.003627 | ||
N(36) | r 35-36 | 1.303 | -0.036107 | ||
loop 3 | N(8) | r 8-9 | 1.417 | -0.166571 | 90.094.6723 |
B(9) | r 8-37 | 1.417 | 0.028774 | ||
N(10) | r 9-10 | 1.303 | -0.058331 | ||
B(11) | r 10-11 | 1.466 | 0.023939 | ||
B(37) | r 11-38 | 1.466 | 0.028554 | ||
N(38) | r 37-38 | 1.303 | -0.058119 | ||
loop 4 | N(12) | r 12-13 | 1.417 | -0.141968 | 90.057.3710 |
B(13) | r 12-39 | 1.417 | -0.003813 | ||
N(14) | r 13-14 | 1.303 | -0.035563 | ||
B(15) | r 14-15 | 1.466 | 0.026477 | ||
B(39) | r 15-40 | 1.466 | -0.003821 | ||
N(40) | r 39-40 | 1.303 | -0.035568 | ||
loop 5 | N(16) | r 16-17 | 1.417 | -0.176228 | 90.03.9639 |
B(17) | r 16-41 | 1.417 | 0.027328 | ||
N(18) | r 17-18 | 1.303 | -0.066071 | ||
B(19) | r 18-19 | 1.466 | 0.025758 | ||
B(41) | r 19-42 | 1.466 | 0.028672 | ||
N(42) | r 41-42 | 1.303 | -0.061409 | ||
loop 6 | N(20) | r 20-21 | 1.417 | -0.145945 | 90.033.7029 |
B(21) | r 20-43 | 1.417 | -0.004382 | ||
N(22) | r 21-22 | 1.303 | -0.038261 | ||
B(23) | r 22-23 | 1.466 | 0.027356 | ||
B(43) | r 23-44 | 1.466 | -0.004393 | ||
N(44) | r 43-44 | 1.303 | -0.038252 | ||
loop 7 | N(24) | r 24-25 | 1.417 | -0.167045 | 90.082.9711 |
B(25) | r 24-45 | 1.417 | 0.032748 | ||
N(26) | r 25-26 | 1.303 | -0.057311 | ||
B(27) | r 26-27 | 1.466 | 0.030136 | ||
B(45) | r 27-46 | 1.466 | 0.034124 | ||
N(46) | r 45-46 | 1.303 | -0.059718 | ||
loop 8 | N(28) | r 28-29 | 1.417 | -0.141699 | 90.0122.8949 |
B(29) | r 28-47 | 1.417 | -0.004621 | ||
N(30) | r 29-30 | 1.303 | -0.035262 | ||
B(31) | r 30-31 | 1.466 | 0.025256 | ||
B(47) | r 31-48 | 1.466 | -0.004614 | ||
N(48) | r 47-48 | 1.303 | -0.035254 |
Magnetic Resonance parameters of [Co(CN)6]3- complexes under three CSGT, GIAO, IGAIM methods have been shown in Table 9.
Table 9. Nuclear Magnetic Resonance parameters of [Co(CN)6]3- complex at three CSGT,GIAO,IGAIM methods.
Compound | NMR parameters (ppm) | ||||||
Isotropic | anisotropy | Δσ | δ | η | Ω | κ | |
[Co(CN)6]3- | CSGTGIAOIGAIM | ||||||
Co(1) | -7827.8043 | 15.4186 | 15.4186 | 10.2791 | 0.734364 | 10.2791 | -0.39844 |
-7827.8043 | 15.4186 | 15.4186 | 10.2791 | 0.734364 | 10.2791 | -0.39844 | |
-7860.7339 | 16.0271 | 16.0271 | 10.6848 | 0.851658 | 10.6848 | -0.22248 | |
C(2) | 35.7915 | 349.7468 | 349.7469 | 233.1646 | 0.001602 | 233.1646 | -1.4976 |
35.7915 | 349.7468 | 349.7469 | 233.1646 | 0.001602 | 233.1646 | -1.4976 | |
19.0814 | 373.804 | 373.804 | 249.2026 | 0.000786 | 249.2026 | -1.49882 | |
C(3) | 35.8802 | 349.5784 | 349.5784 | 233.0522 | 0.000275 | 233.0522 | -1.49959 |
35.8802 | 349.5784 | 349.5784 | 233.0522 | 0.000275 | 233.0522 | -1.49959 | |
19.1472 | 373.7295 | 373.7295 | 249.153 | 7.14E-05 | 249.153 | -1.49989 | |
C(4) | 35.8283 | 349.6323 | 349.6323 | 233.0881 | 0.000297 | 233.0881 | -1.49956 |
35.8283 | 349.6323 | 349.6323 | 233.0881 | 0.000297 | 233.0881 | -1.49956 | |
19.0861 | 373.7933 | 373.7934 | 249.1956 | 5.26E-05 | 249.1956 | -1.49992 | |
C(5) | 35.808 | 349.6633 | 349.6633 | 233.1089 | 0.000288 | 233.1089 | -1.49957 |
35.808 | 349.6633 | 349.6633 | 233.1089 | 0.000288 | 233.1089 | -1.49957 | |
19.064 | 373.8239 | 373.8239 | 249.216 | 8.83E-05 | 249.216 | -1.49987 | |
C(6) | 35.8821 | 349.5573 | 349.5574 | 233.0382 | 0.000264 | 233.0382 | -1.4996 |
35.8821 | 349.5573 | 349.5574 | 233.0382 | 0.000264 | 233.0382 | -1.4996 | |
19.1366 | 373.7248 | 373.7248 | 249.1499 | 0.000134 | 249.1499 | -1.4998 | |
C(7) | 35.7907 | 349.7474 | 349.7474 | 233.165 | 0.001602 | 233.165 | -1.4976 |
35.7907 | 349.7474 | 349.7474 | 233.165 | 0.001602 | 233.165 | -1.4976 | |
19.0811 | 373.804 | 373.804 | 249.2026 | 0.000786 | 249.2026 | -1.49882 | |
N(8) | -33.9122 | 527.9381 | 527.9381 | 351.9587 | 0.000605 | 351.9587 | -1.49909 |
-33.9122 | 527.9381 | 527.9381 | 351.9587 | 0.000605 | 351.9587 | -1.49909 | |
-43.2697 | 546.1166 | 546.1166 | 364.0778 | 6.54E-05 | 364.0778 | -1.4999 | |
N(9) | -34.1079 | 528.12 | 528.12 | 352.08 | 0.001431 | 352.08 | -1.49785 |
-34.1079 | 528.12 | 528.12 | 352.08 | 0.001431 | 352.08 | -1.49785 | |
-43.363 | 546.2229 | 546.2229 | 364.1486 | 0.000444 | 364.1486 | -1.49933 | |
N(10) | -34.1006 | 528.0967 | 528.0967 | 352.0645 | 0.000689 | 352.0645 | -1.49897 |
-34.1006 | 528.0967 | 528.0967 | 352.0645 | 0.000689 | 352.0645 | -1.49897 | |
-43.3832 | 546.2333 | 546.2334 | 364.1556 | 0.000105 | 364.1556 | -1.49984 | |
N(11) | -34.1084 | 528.1192 | 528.1192 | 352.0794 | 0.00143 | 352.0794 | -1.49786 |
-34.1084 | 528.1192 | 528.1192 | 352.0794 | 0.00143 | 352.0794 | -1.49786 | |
-43.3629 | 546.2218 | 546.2219 | 364.1479 | 0.000443 | 364.1479 | -1.49934 | |
N(12) | -34.063 | 528.0556 | 528.0557 | 352.0371 | 0.00073 | 352.0371 | -1.49891 |
-34.063 | 528.0556 | 528.0557 | 352.0371 | 0.00073 | 352.0371 | -1.49891 | |
-43.3477 | 546.193 | 546.193 | 364.1286 | 3.05E-05 | 364.1286 | -1.49995 | |
N(13) | -33.9229 | 527.9167 | 527.9167 | 351.9444 | 0.000552 | 351.9444 | -1.49917 |
-33.9229 | 527.9167 | 527.9167 | 351.9444 | 0.000552 | 351.9444 | -1.49917 | |
-43.2617 | 546.0694 | 546.0694 | 364.0463 | 7.72E-05 | 364.0463 | -1.49988 |
CONCLUSION
In this study, Density functional theory calculations with EPR basis sets have been employed to determination non-bonded interaction. In accordance with Table 3, definition the magnitude of Δo under strong field ligands, such as (CN)–, equal to 0.25308 a.u. . In accordance with Table 1, [Co(CN)6]3- complex with strong field ligands no exhibit the Jahn–Teller distortion. It has been displayed at Table 5 that the bonding coefficients of s, p and d orbitals were 0.3 and anti-bonding coefficients of Co-C bonds were 0.8 and Co-N bonds were 0.7. In accordance with NICS values of Table 6, it’s displayed that loops1,3 and 5 have similar NICS values and equal to -10.1058 and loops 2,4 and 6 have similar NICS values and equal to -10.1189. So, the more negative NICS values, the aromaticity and magnetism that loops most. According to different NMR methods of Table 9, characterize that CSGT and GIAO methods have similar quantity.
ACKNOWLEDGMENT
The authors gratefully acknowledge the financial and other support of this research, provided by the Islamic Azad University, Eslamshahr Branch,Tehran,Iran.
REFERENCES
- Wu, H.S, Jiao, H.J.: What is the most stable B24N24 fullerene?. Chemical Physics Letters. 386, 369–372 (2004)
- Wu, HS, Xu, XH, Strout, D.L, Jiao, H.J .: The structure and stability of B36N36 cages: a computational study. J Mol Model. 12, 1–8 (2005)
- Rogers, K.M, Fowler, PW, Seifert, G.: Chemical versus steric frustration in boron nitride heterofullerene polyhedra. Chemical physics letters. 332, 43-50 (2000)
- Zhu, H.Y, Schmalz, T.G, Klein, D.J. : Alternant boron nitride cages: A theoretical study. International Journal of Quantum Chemistry. 63, 393–401 (1997)
- Manolopoulos, D.E, Fowler, P.W.: Structural proposals for endohedral metal-fullerene complexes. Chem Phys Lett. 187, 1–7 (1991)
- Zope, R.R, Dunlap, B.I.: Are hemispherical caps of boron–nitride nanotubes possible?.Chemical physics letters. 386,403–407(2004)
- Zhang.R., Huyskensd T.Z, Ceulemeans, A, Nguyen M.T.: Interaction of triplet uracil and thymine with water. Chemical Physics. 316, 35 – 44 (2005)
- Amiri. A, Monajjemi. M , Ketabi. S.: Quantum simulation on donor and acceptor II calix[4]arene substrate and alkali metal ions: the driven inclusion. Physics and Chemistry of Liquids. 45, 425-433(2007)
- Monajjemi, M.; Azad, M.T.; Haeri, H.H.; Zare, K.; Hamedani, Sh.: Ab initio conformational analysis of glutamic acid, chemical shift anisotropy and population studies. Journal of Chemical Research. 2003, 454-456 (2003)
- Reed, A. E, Weinhold, F.: A THEORETICAL-MODEL OF BONDING IN HYPERLITHIATED CARBON-COMPOUNDS. Journal of the American Chemical Society. 107, 1919-1921 (1985)
- Monajjemi, M.; Khaleghian, M.: EPR Study of Electronic Structure of [CoF6] and B18N18 Nano Ring Field Effects on Octahedral Complex. Journal of Cluster Science. 22, 673–692 (2011).
This work is licensed under a Creative Commons Attribution 4.0 International License.