ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039
     FacebookTwitterLinkedinMendeley

X-ray Diffraction Studies of Co(II), Sm(III) and Nd(III) Complexes with Gliclazide (N-(hexahydrocyclopenta[c] pyrrol-2(1H)-carbamoyl)-4-methylbenzenesulfonamide, An Oral Antidiabetic Drug

Bal Krishan1*, M. Tawkir1 and S.A. Iqbal2

1Department of Chemistry, Safia Science College, Bhopal - 462 001, India. 2Cresent College of Technology Nabi Bagh Karond, Bhopal - 462 038, India.

Article Publishing History
Article Received on :
Article Accepted on :
Article Published : 22 Oct 2016
Article Metrics
ABSTRACT:

Gliclazide(N-hexahydrocyclopentapyrrol-2-carbamoyl)-4-methylbenzenesulphonamide was used to synthesize Co(II),Sm(III) , Nd(III) complexes. Metal complxes were characterized by elemental analysis, IR, NMR,TGA. The crystal structure of complexes were further determined by X-ray diffraction method. The XRD data was used to calculate various parameters like crystal system, volume,density,porosity,particle size etc.which shows that the complexes of Co(II),Sm(III) and Nd(III) are octahedral structure.

KEYWORDS:

Gliclazide; Crystal structure; Co(II); Sm(III) and Nd(III) complex

Download this article as: 

Copy the following to cite this article:

Krishan B, Tawkir M, Iqbal S. A. X-ray Diffraction Studies of Co(II), Sm(III) and Nd(III) Complexes with Gliclazide (N-(hexahydrocyclopenta[c] pyrrol-2(1H)-carbamoyl)-4-methylbenzenesulfonamide, An Oral Antidiabetic Drug. Orient J Chem 2012;28(4).


Copy the following to cite this URL:

Krishan B, Tawkir M, Iqbal S. A. X-ray Diffraction Studies of Co(II), Sm(III) and Nd(III) Complexes with Gliclazide (N-(hexahydrocyclopenta[c] pyrrol-2(1H)-carbamoyl)-4-methylbenzenesulfonamide, An Oral Antidiabetic Drug. Available from: http://www.orientjchem.org/?p=22871


Introduction

Polyfunctionally rings compounds and synthesis of their metal complex which have various biological activities and include hetero atom, have been formed in organic synthesis and coordination chemistry.1-6 Many trasition and inner trasition metal complexes have been synthesized for analytical and commercial applications many of medicinal use.7-9,24-28 literature survey reveals that the transition and inner transition metal complexes generally crystallized with tetrahedral, octahedral geometry. 10-12

Experimental 

All the chemicals used for the preparation of complexes are of Hi-media AR grade E-merk. Metal complexes are synthesized by adding metal salt solution in appropriate solvent to the solution of the ligand. The mixture was refluxed for 3-4 hours. Then the precipitate of metal complxes was obtained. It is filtered, washed and dried in vacuum desiccators.

All selected metals forms 1:2 complexes with gliclazide were confirmed by Jobs  method as modified by Turner and Anderson.13-14

Table 1: Physico-chemical and Analytical data of Gliclazide Complexes.

01

(C15H20N3O3S)2Nd2H2O

1:2

Off White

45

192

17.48

(17.33)

02

(C15H20N3O3S)2Co2H2O

1:2

     Pink

56

220

7.76

(7.76)

03

(C15H20N3O3S)2Sm 2H2O

1:2

Pale Yellow

53

216

18.08

(17.96)

Sr. No.

% of Carbon observed/ (Required)

% of H observed/ (Required)

% N observed/ Required

% of S observed/ Required

Stability constant log k lit/mole

Free Energy Change

(-ΔF)

01

43.63

(42.80)

5.33

(4.86)

10.18

(9.90)

7.75

(6.77)

9.7219

-11.7438

02

48.66

(49.70)

5.84

(4.86)

11.35

(7.75)

8.65

(5.80)

10.6973

-13.7099

03

          43.31

(42.70)

5.29

(4.86)

10.10

(9.70)

7.69

(7.21)

9.6677

-11.6692

Results and Discussion

The X-ray diffraction of Co(II),Sm(III) and Nd (III) complexes with Gliclazide were obtained and summarized in following tables. All reflections has been indexed for h, k, l values using reported literature15-23and full proof suit XRD software v.2.0 by using foolproof suite XRD software the d-values of metal complexes were obtained.

X-ray diffraction study of Gliclazide complexes

The X-ray diffraction pattern of Co(II), Sm(III) and Nd(III) complexes has been determined 2θ range from 6.1963 to 79.97884°,Diffractograms (Fig-1,2,3,) and data has been summarized in the following table..

Gliclazide (GLZ-Co)

Figure 1: X-ray difractogram of GLZ-Co Complex

Figure 1: X-ray difractogram of GLZ-Co Complex



Click here to View figure

 

Table 1: Cell data and crystal parameter of GLZ-Co complex

a(Å) = 21.6990                                                                      Volume(abcsinb)Å= 13880.931

b(Å) = 23.1881                                                                Dcal=4.02100 g/cm3

c(Å) = 27.5891                                                                                                                         Dobs= 4.03241 g/cm3

Standard deviation = 0.024%                                  Crystal system       =    Monoclinic

α=90°, β=89.4°, γ =90°                                            Porosity(%)           =    2.837

Density  = 0.05329g/cm3                                          Particle size           =    15.794microns

Space group = Pm

2θ

I/I0

D(Obs)

D(Cal)

h

k

l

10.5540

69.89

8.38237

8.46731

1

0

3

16.3437

60.23

5.42369

5.42470

4

0

0

19.0109

99.40

4.66834

4.64949

2

3

4

19.8736

82.38

4.46760

4.46387

3

4

1

20.4293

53.81

4.34731

4.34770

1

4

4

22.0439

100.00

4.03241

4.02100

5

2

1

31.8513

52.99

2.80964

2.80664

7

1

4

39.3397

29.09

2.29037

2.28905

1

4

11

45.6199

37.40

1.98697

1.98754

9

3

7

 

Figure 2: X-ray difractogram of GLZ-Sm Complex

Figure 2: X-ray difractogram of GLZ-Sm Complex

 



Click here to View figure


Table 2: Cell data and crystal parameters for [ (GLZ)2Sm2H2O] complex

a(Å) = 21.7621                                                Volume (abcsinβ)Å     = 14065.269

b(Å) = 23.4271                                            Dcal                        = 13.86574 g/cm3

c(Å) = 27.5913                                             Dobs                       = 14.17908 g/cm3

Standard deviation = 0.0034%                    Crystal system    = Monoclinic(Octahedral)

α =90°, β=89.2°, γ =90°                               Porosity(%)                        = 3.0055 %

Density                             = 0.059094g/cm3

Space group                        = Pm                              Particle size          =23.5720 microns

2 θ

I/I0

D(Obs)

D(Cal)

h

k

l

6.2336

100

14.17908

13.86574

1

1

1

16.2587

34.89

5.45184

5.43999

4

0

0

28.1979

21.43

3.16480

3.16244

-6

1

4

29.3552

34.62

3.04261

3.04027

2

3

8

41.0622

    19.06

2.19818

2.19539

-4

6

9

50.4845

14.68

1.80782

1.80644

8

3

11

58.0457

8.22

1.58780

1.58759

10

1

12

From the cell data and crystal lattice one can conclude that Co(II),Sm(III) and Nd(III) complex is having monoclinic crystal

Figure 3: X-ray difractogram of GLZ-Nd Complex Figure 3: X-ray difractogram of GLZ-Nd Complex

 



Click here to View figure

 

Table 3: Cell data and crystal parameter of GLZ-Nd Complex

a(Å) = 21.762                                                                           Volume (abcsin b)Å= 14065.307

b(Å) = 23.4271                                                                                 Dcal = 13.86574 g/cm3

c(Å) = 27.274                                                                           Dobs =14.26441 g/cm3

Standard deviation = 0.0026%                                                     Crystal system             =      monoclinic

α=90°, β=89.2, γ =90°                                                                     Porosity(%)                   =      3.0055

Density = 0.0586592g/cm3                                                            Particle size                   =      15.484microns

Space group = Pm

I/I0

D(Obs)

D(Cal)

h

k

l

6.1963

100

14.26441

13.86574

1

1

1

16.0639

16.52

5.55751

5.51772

  0

0

5

18.2478

2.92

4.86181

4.85591

-3

1

4

27.9094

10.13

3.19686

3.19271

-3

5

5

28.9225

15.47

2.76823

3.08474

-6

3

3

32.3407

2.16

2.42315

2.76573

7

3

3

37.1028

0.92

2.22463

2.42107

4

2

10

40.5523

8.43

2.09735

2.22284

3

10

1

43.1325

1.82

1.82716

2.09549

6

7

7

49.9132

6.76

1.76742

1.82558

-8

1

11

51.7224

0.86

1.61184

1.76595

12

3

0

57.1485

2.36

1.54030

1.61049

-6

13

1

60.0677

0.80

1.42229

1.53910

3

9

14

Conclusion

X-ray diffraction studies also confirms the complexes and formation of new bonds. The number of peaks in Gliclazide are 22 while that of (GLC)2 Nd   (GLC)2Co and (GLC)2Sm. are 24,9 and 8 respectively  . Thus indicating that complexes formed are a well kit one moreover the X-ray pattern of neither Gliclazide all the reflections present are new ones and the patterns are fairly strong. On comparing the pattern obtained with available literature. It is evident that its pattern is not in good agreement with available information and thus confirms the formation of totally new complexes The X-ray pattern have been indexed by using computer software(FPSUIT 2.0V) and applying interactive trial and error method keeping in mind the characterstics of the various symmetry system,till a good fit was obtained between the observed and the calculated Sin2θ value.The unit cell parameters were calculated from the indexed data, from cell data and crystal lattice parameters of system. (GLC)2Co.2H2O and (GLC)2Sm.2H2O and (GLZ)2Nd2H2O complexes attributed to Monoclinic crystal system .

Table 4

Molecular Formula

complexes

Molr Weight

(gm/mole)

Crystal/ System

(C15H20N3O3 S)2Co2H2O

Co(II)

739.75

Monoclinic

(C15H20N3O3 S)2Nd2H2O

Nd(III)

825.06

Monoclinic

(C15H20N3O3 S)2Sm2H2O

Sm(III)

        831.18

Monoclinic

 

Scheme 1

Scheme 1



Click here to View scheme

 

Where, M = Co(II),Sm(III) and Nd(III)

Proposed structure of (GLZ)2Co2H2O , (GLZ)2Sm2H2O and (GLZ)2Nd2H2O  complexes

Acknowledgement 

The author is thankful to the principal of Saifia Science College, Bhopal and Principal, of Cresent College of Technology , Bhopal for providing all necessary facilities and Punjab University for providing XRD spectra.

References

  1. S.N. Pandeya, D. Sriram, G. Nath and E.De. Clereq, Arzneim-forsch/Drug Res. 50, 55(2000)
  2. B.S. Hollo, K.A. Poojary and B. Kollurya, II, Farmaco, 51, 793 (1996)
  3. M. Kidwai, P. Sapra; P. Mishra; R.K. Saxena and M. Singh Bioorg. Med. Chem. 9,217 (2001)
  4. M.Kumar and S.Ahmad, Orient J,Chem.26(4) 1455-1459(2010)
  5. H.K. Reddy,D.P.Seshaiah and A.V.Reddy,Orient.J.Chem.27(3);1125-1131(2011)
  6. B.H. Mehta and S.A. Dugaonkar, Proceeding of 13th, Australia Symposium on analytical chemistry, Darwin Northern, Australia (1995)
  7. S.A. Dagaonkar, Ph.D. Thesis, University of Mumbai, India (1995)
  8. R.N.Pandey,D.P.Singh,Priya and R.K.Singh,Orient J.Chem.26(4);1513-1516(2010)
  9. K.Jamuna D.Harikishore,B.N.Kumar and D.K.Ramana,Orient J.Chem.27(3);1141-1147(2011)
  10. S. Prakash; Y. Dutt and R.P. Singh: Indian J. Chem, 7, 512 (1969)
  11. R.P. Bhargava and M. Tyagi, Indian J.Chem.; 25A, 193 (1986)
  12. N.S. Bhave; R.B. Kharat; J. Chem. Soc. 56, 244 (1979)
  13. Sharma,R.N.,Sharma,K.P.,and Dixit,S.N.,orient.J.chem.,26(1):283-86(2010)
  14. Asmi Denavi and Iqbal S.A. Orient J. Chem. 2(2), 156-159 (1986)
  15. N.F.M. Henry, H. Lipson and W.A. Wooster, Interpretation of X-ray  diffraction photograph. 81(1851)
  16. Chohan, Zahid H.; Praveen M. and Ghaffer A., Synth. React. Inorg. Met. Org. Chem 28(1998), 1973
  17. Juan Rodriguez – Carvajal and  Institute Lue Langevin Diffraction group 6, rue, Jules Horowitz B.P. 156-38042, Greenoble Cedex-9, France/ Email- irc@illfr.
  18. Altermatt, D. and Brown, I.D. Acta Cryst (1985); B41, 244-247
  19. Brown, I.D., The Chemical bond in inorganic chemistry, The bond valence model IUCr monographs on crystallography, 12, Oxford University Press, (2002), www.ccp14.ac.uk/ccp/web-mirrors/idbrown
  20. R.L. Dutta and A. Synmal, Elements of magnetochemistry Affiliated East-West Press Pvt. Ltd. Edn.2(1993)
  21. A. A. Alhadi S.A.Shaker W.A.Yehe,H.M.Ali and A.A. Mahmood,Orient.J. Chem.,27(4);1437-1442(2011)
  22. A.S. AL-Janabi,and S.A.Ahmed,Orient.J.Chem.27(4);1563-1571(2011)
  23. S.Singh,K.K.Singh and J.P. Singh,Orient.J.Chem.27(3);1233-1237(2011)
  24. M.R.Khan and Sahdev,Orient.J.Chem.27(2);649-653(2011)
  25. K.Shankar and A.B.Nazeera,Orient.J.Chem.,27(2);655-660(2011)
  26. Khalil,O.M.,and Reefat,H.M.,Orient.J.chem.,27(9):1581-1590(2011)
  27. Bhadja,D.R.,Parsania,P.H.,orient.J.chem.,27(4):1699-1707(2011)
  28. Iqbal,S.A.,and Zaafarny,I.,Orient.J.chem,613-18(2012)


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.