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Abstract

	 CB1 allosteric modulators such as synthetic cannabinoids are promising therapeutic 
agents. Among the various CB1 receptor modulators, indole-2-carboxamides, and N, N'-diphenyl 
urea derivatives are continuously explored for their potency and selectivity towards the receptor. 
In the present computational work, QSAR models were generated using Drug Theoretics and 
Chemoinformatics (DTC tools) tools to analyze the influence of molecular features of these 
modulators (one hundred and fourteen compounds) on the activity. A statistically significant 
three-parameter model (SPMin2_Bhm, maxdO, and minssN) was derived that displayed R2 
and Q2 values of 0.66 and 0.62, respectively. SPMin2_Bhm and maxdO negatively correlated 
with the activity, whereas minssN has a positive connection. A seven-parameter model (maxdO, 
minsssN, RDF55v, VE3_D, minHBint10, SpMin5_Bhs, and CrippenLogP) was also obtained with 
R2 and Q2 values of 0.76 and 0.70, respectively.  The findings might assist in the design and 
development of novel CB1 modulators based on the structures of indole-2-carboxamides and 
N, N'-diphenyl urea

Keywords: QSAR, CB1 modulators, Indole-2-carboxamides, N,N'-diphenyl urea.

Introduction

	 CB1 constitutes an important target 
for treating drug addiction, obesity, arthritis, 
osteoporosis, mental illness, psychosis, and 
multiple sclerosis1,2. Several agonists/antagonists/

inverse agonists have been developed to target 
these G-protein-coupled receptors. Potent CB 
agonists like Δ9-tetrahydrocannabinol (THC) 
and nabilone (for treating pain) and CB1 inverse 
agonists such as rimonabant and taranabant (for 
treating obesity) were researched in a pervasive 
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manner in clinical settings. However, due to their 
extensive psychiatric side effects, anxiety-related 
disorders, and depression, they either were 
withdrawn from the market or have restricted 
usage3-5. On the contrary, CB1 allosteric modulators 
(compounds that bind at the allosteric sites of 
the CB1 receptor and alter the conformation of 
the primary binding site) offer an alternate and 

Fig. 1. Clinically available allosteric modulators 
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safe strategy for targeting the CB1 receptor. The 
allosteric modulators offer added advantages both 
in terms of selectivity and safety6,7. Cinacalcet (used 
in kidney disease and acts as calcium-sensing 
receptor agonist) and Maraviroc (anti-HIV agent 
and acts by CCR5 inhibition) are two examples 
of clinically available agents (Fig. 1) that act by 
allosteric modulation of their target receptors8.

	 Several chemical entities like indole-
based small molecules, urea-based compounds, 
and some tropane-bearing molecules were 
investigated for their potential benefits in this 
area (Fig. 2). It is also reported that fenofibrate 
and lipoxin A4 exhibit CB1R allosteric modulator 
activity. In 2005, Organon Research Company 
identified the CB1 modulatory activity of indoles. 
One of the indoles, ORG27569 was considered 
as the prototype molecule, extensively used to 
elucidate the molecular mechanisms, binding site 
predictions and to investigate pharmacological 
activities. Based on this molecule several potent 
CB1 modulators (positive & negative) were 
developed. The identification of urea-based 
compounds as CB1 modulators started in 2007 

by Prosidion Company in a high throughput 
screening effort. PSNCBAM-1 is considered as 
a lead in this chemical group of compounds and 
several derivatives were synthesized using this 
structure10-13. Meini and their research group tested 
several structural derivatives from PSNCBAM-1 for 
CB1 allosteric modulator activity and thoroughly 
discussed the SAR14. In recent work, Nguyen  
et al., combined the structural features of 
ORG27569 and PSNCBAM-1 to design hybrid 
structures and screened for calcium mobilization 
assay. Hybrid molecules displayed similar potency 
as that of parent molecules. ORG27569 and 
PSNCBAM-1 share common pharmacophoric 
features and bind with the target site involved in 
similar types of interactions15. 

Fig. 2. Few prototype CB1 allosteric modulators 
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	 QSAR methods are gaining popularity owing 
to saving time, cost, and resources while simultaneously 
providing good hit rates16,17. QSAR modeling requires 
a thorough literature review, data collection, selection 
of molecular descriptors, QSAR model derivation, 

and finally model validation. The quality and the 
characteristics of the data set of compounds such 
as the number of compounds in the data and the 
activity range of the molecules significantly affect the 
performance of the QSAR model (predictive ability and 
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reliability)18. Molecular descriptors capture the chemical 
information (electronic, topological, geometrical, 
quantum, etc.) of a structure. Once the chemical 
structures are curated properly, molecular descriptors 
can be calculated using one or more available software 
tools. It is always recommended to use diverse types 
of molecular descriptors for better QSAR predictions19. 
To derive statistically significant QSAR models, 
linear and non-linear approaches are used, and the 
selection of the method largely depends on the dataset  
size and quality18.

	 QSAR approaches have been proven 
reliable in designing CB1 receptor antagonists/
inverse antagonists. Khan et al., derived robust 
3D-QSAR models using a set of one hundred 
1,2,4-triazole derivatives and also designed novel 
molecules based on the QSAR findings20. Similarly, 
using a series of 5-thiophen-2-yl pyrazoles (potent 
CB1 antagonists), Hanachi et al., investigated the 
structure-activity relationship. Authors identified 
molecular subunit structures that can mimic 
rimonabant (anti-obesity agent) at the active 
site21. CB1 receptor allosteric modulators hold 
great therapeutic potential (anti-obesity & central 
analgesics) but suffer from several challenges 
during the preclinical and clinical studies. Given the 
promising insights that can be derived from QSAR 
modeling, it was aimed to develop QSAR models 
for a set of CB1 allosteric modulators including two 
potent classes of compounds i.e., N, N'-diphenyl 
urea and 1H indole-2-carboxamide derivatives. 
The objective is to develop QSAR models that can 
identify the key molecular descriptors associated 
with CB1 allosteric modulator activity and have high 
predictive ability

Experimental

Molecular Modeling Hardware and Software 
Dataset of compounds
	 All the chemical structures were extracted 
from the literature22-25. The data set of compounds 
belongs to two structural classes (Fig. 3), one 
group of eighty derivatives of N, N'-diphenyl urea 
(Table 1: A, C, D series of compounds) and another 
group of thirty-four compounds, which represent the 
derivatives of 1H indole-2-carboxamide derivatives 
(Table 2: B series). The IC50 values (calcium 
mobilization assay) of the compounds (one hundred 
and fourteen) were then converted into the pIC50. 

Software tools used for the QSAR modeling
	 For drawing the structures and converting 
to 3D format, Chemdraw and Marvin Sketch (https://
www.chemaxon.com) were used respectively. 
Using Marvin, explicit hydrogens were added 
to the structures and then converted to 3D and 
saved in MDL mol format. PaDEL software allows 
the calculation of a diverse set of descriptors and 
molecular fingerprints26. DTC tools [http://teqip.jdvu.
ac.in/QSAR_Tools/] were installed and employed 
for the rest of the study including pre-treatment 
of data (V-WSP version 1.2 tool), model building 
and validation (DTC-QSAR tool version 1.0.7). For 
dataset division, the Kennard Stone algorithm was 
selected, which is a more rational data-splitting 
technique compared to the random division.  
GA-MLR (The genetic algor ithm combined 
with multiple linear regression) technique was 
employed to obtain QSAR models. This technique 
is superior to the conventional step-wise MLR 
approach, as it can effectively select more relevant 
variables (molecular descriptors) and produce more 
interpretable QSAR models27. 

Fig. 3. General structures of compounds chosen for the QSAR study
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Model Validation
	 QSAR models (internal & external) were 
evaluated for predictive power. Internal validation 
parameters were calculated for the training set, 
which include, R2, R2

adj, SEE, Q2 (LOO), SDEP 
(LOO), Scaled Average R2

m (LOO), Scaled Delta 
R2

m (LOO), and MAE. The test set was used for 
external validation to assess the constructed 
model's prediction power on a new set. External 
validation metrices were calculated including Q2 
(F1), Q2 (F2), Scaled Average R2

m, Scaled Delta 

R2
m, CCC and MAE28-30 (Tables 3 & 4).

Applicability Domain
	 This technique determines the presence 
of response outliers (a compound that exhibits 
activity in an unexpected manner compared 
to other compounds in the data set)  and 
structural outliers in the test set and training 
set compounds, respectively. A standardized 
approach developed by Roy et al., 2015 was 
used for this purpose31.

Table 1: Structures, IC50 and pIC50 of compounds having N, N'-diphenyl urea nucleus

	Sr. No	 ID	 Structure	 IC50 (nm)	 pIC50

	 1  	 A1	 N
H

Cl

N
H

O
N N 	 32.5	 7.488

	 2  	 A2	 N
H

Cl

N
H

O
N N 	 95	 7.022

	 3  	 A3	 N
H

Cl

N
H

O
N N 	 27.4	 7.562

	 4  	 A4	 N
H

Cl

N
H

O
N N 	 125	 6.903

	 5  	 A5	
N
H

Cl

N
H

O
N N 	 372	 6.429

	 6  	 A6	 N
H

Cl

N
H

O

N N
	 693	 6.159

	 7  	 A7	 N
H

Cl

N
H

O
N

H
N 	 317	 6.498

	 8  	 A8	 N
H

Cl

N
H

O
N NH 	 181	 6.742

	 9  	 A9	 N
H

Cl

N
H

O
N NH 	 311	 6.507

	 10  	 A10	
N
H

Cl

N
H

O
N NH 	 93	 7.031

	 11  	 A11	
N
H

Cl

N
H

O
N NH 	 867	 6.061

	 12  	 A12	
N
H

Cl

N
H

O
N NH 	 1360	 5.866

	 13  	 A13	 N
H

Cl

N
H

O
N

H
N 	 501	 6.3

	 14  	 A14	 N
H

Cl

N
H

O
N N 	 53.7	 7.27
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	 15  	 A15	
N
H

Cl

N
H

O
N N 	 156	 6.806

	 16  	 A16	 N
H

Cl

N
H

O
N N 	 104	 6.982

	 17  	 A17	 N
H

Cl

N
H

O
N N

H

O

	 251	 6.6

	 18	 A18	 N
H

N
H

O
N N 	 166	 6.779

	 19  	 A19	 N
H

N
H

O
N N

F

	 32	 7.494

	 20  	 A20	 N
H

N
H

O
N N

Br

	 98	 7.008

	 21 	 A21	 N
H

N
H

O
N N

NC

	 33	 7.481

	 22  	 A22	 N
H

N
H

O
N N

O2N

	 100	 7

	 23  	 A23	 N
H

N
H

O
N N 	 203	 6.692

	 24  	 A24	 N
H

N
H

O
N N

O

	 189	 6.723

	 25  	 A25	 N
H

N
H

O
N N

N

	 1640	 5.785

	 26  	 A26	 N
H

N
H

O
N N

O

O 	 312	 6.505

	 27  	 A27	 N
H

N
H

O
N N

O

O 	 >10000	 5

	 28  	 A28	 N
H

N
H

O
N N 	 1880	 5.725

	 29  	 A29	 N
H

N
H

O
N N 	 >10000	 5

	 30  	 A30	 N
H

N
H

O
N N 	 >10000	 5

	 31  	 A31	 N
H

N
H

O
N N 	 >10000	 5

	 32 	 A32	
N
H

N
H

O
N N

Cl
	 228	 6.642

	 33  	 A33	
N
H

N
H

O
N N

Cl

Cl

	 161	 6.793

	 34  	 A34	
N
H

N
H

O
N N

Cl

Cl

	 716	 6.145



1431LONE et al., Orient. J. Chem., Vol. 40(5), 1426-1439 (2024)

	 35  	 A35	
N

N
H

N
H

O
N N

Cl

	 135	 6.869

	 36  	 A36	 N
H

N
H

O
N N 	 >10000	 5

	 37  	 A37	 N
H

N
H

O
N N

	 888	 6.051

	 38  	 C1	 N
H

Cl

N
H

O
N O

	 231	 6.636

	 39  	 C2	
N
H

Cl

N
H

O
N

	 1310	 5.882

	 40  	 C3	 N
H

Cl

N
H

O

N

O
	 133	 6.876

	 41  	 C4	 N
H

Cl

N
H

O
N

	 47	 7.327

	 42  	 C5	 N
H

Cl

N
H

O

N	 244	 6.612

	 43  	 C6	 N
H

Cl

N
H

O

N
	 178	 6.749

	 44  	 C7	 N
H

Cl

N
H

O

N

N	 290	 6.537

	 45  	 C8	 N
H

Cl

N
H

O

	 32	 7.494

	 46  	 C9	 N
H

Cl

N
H

O
O

	 81	 7.091

	 47  	 C10	 N
H

Cl

N
H

O
OH

	 840	 6.075

	 48  	 C11	 N
H

Cl

N
H

O
O

	 141	 6.85

	 49  	 C12	 N
H

Cl

N
H

O

O

O 	 70	 7.154

	 50  	 C13	 N
H

Cl

N
H

O

	 74	 7.13

	 51  	 C14	 N
H

Cl

N
H

O
	 190	 6.721

	 52  	 C15	
N
H

Cl

N
H

O
NO2	 27	 7.568
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	 53  	 C16	
N
H

Cl

N
H

O

Cl

	 95	 7.022

	 54  	 C17	 N
H

Cl

N
H

O
Cl

Cl

	 22	 7.657

	 55  	 C18	 N
H

Cl

N
H

O
Cl

Cl

	 30	 7.522

	 56  	 C19	 N
H

Cl

N
H

O Cl

Cl

	 338	 6.471

	 57  	 C20	 N
H

Cl

N
H

O

F

	 23	 7.638

	 58  	 C21	 N
H

Cl

N
H

O

F

F

	 18	 7.744

	 59  	 C22	
N
H

Cl

N
H

O

	 591	 6.228

	 60  	 C23	
N
H

Cl

N
H

O

	 460	 6.337

	 61  	 C24	 N
H

Cl

N
H

O

	 195	 6.709

	 62  	 C25	
N
H

Cl

N
H

O

	 1340	 5.872

	 63  	 C26	

N
H

Cl

N
H

O

O 	 1570	 5.804

 
	 64  	 C27	

N
H

Cl

N
H

O

O
	 134	 6.872

	 65  	 C28	
N
H

Cl

N
H

O

	 132	 6.879

	 66  	 C29	
N
H

Cl

N
H

O
N

	 334	 6.476

	 67  	 C30	
N
H

Cl

N
H

O

N
	 516	 6.287

	 68  	 C31	
N
H

Cl

N
H

O

	 1260	 5.899
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	 69  	 D1	 N
H

Cl

N
H

O

O

	 41	 7.387

	 70  	 D2	
N
H

Cl

N
H

O

S

	 36	 7.443

	 71  	 D3	
N
H

Cl

N
H

O
S 	 67	 7.173

	 72  	 D4	
N
H

Cl

N
H

O

S

	 40	 7.397

	 73  	 D5	
N
H

Cl

N
H

O
S 	 42	 7.376

	 74  	 D6	
N
H

Cl

N
H

O

HN

	 169	 6.772

	 75  	 D7	 N
H

Cl

N
H

O

N

	 165	 6.782

	 76  	 D8	
N
H

Cl

N
H

O

NO

O

	 3444	 5.462

	 77  	 D9	 N
H

Cl

N
H

O

S

N 	 84	 7.0757

	 78  	 D10	 N
H

Cl

N
H

O

N

S 	 94	 7.026

	 79  	 D11	 N
H

Cl

N
H

O

N

S 	 154	 6.812

	 80  	 D12	 N
H

Cl

N
H

O

HN

N 	 529	 6.276
				  

Table 2: Structures, IC50 and pIC50 of compounds having 1H-indole-2-carboxamide 
nucleus (34 compounds)

	Sr. No	 ID	 Structure	 IC50 (nm)	 pIC50

	 1	 B1	
Cl

N
H

HN

O

N

	 853	 6.069

	 2	 B2	
Cl

N
H

HN

O

NO2
	 5740	 5.241

	 3	 B3	 Cl

N
H

HN

O

N
	 787	 6.104
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	 4	 B4	

Cl

N
H

HN

O

N
	 483	 6.316

	 5	 B5	
Cl

N
H

HN

O

N
	 1800	 5.744

	 6	 B6	

Cl

N
H

HN

O

NH

	 3620	 5.441

	 7	 B7	
Cl

N
H

HN

O

N

	 >10000	 5

	 8	 B8	

Cl

N
H

HN

O

NH
O

	 >10000	 5

	 9	 B9	 Cl

N
H

HN

O

NH
O

	 >10000	 5

	 10	 B10	
Cl

N
H

HN

O

NH
O	 >10000	 5

	 11	 B11	

Cl

N
H

HN

O
	 3150	 5.501

	 12	 B12	

Cl

N
H

HN

O

Cl
	 2500	 5.602

	 13	 B13	

Cl

N
H

HN

O

OCH3

	 2560	 5.591

	 14	 B14	

Cl

N
H

HN

O
	 2430	 5.614

	 15	 B15	

Cl

N
H

HN

O

Cl

	 5810	 5.235

	 16	 B16	

Cl

N
H

HN

O

Cl

	 831	 6.08

	 17	 B17	

Cl

N
H

H
N

O

O

	 2100	 5.677

	 18	 B18	
Cl

N
H

HN

O

OH

	 >10000	 5

	 19	 B19	
Cl

N
H

HN

O

OH

O

	 >10000	 5

	 20	 B20	
Cl

N
H

HN

O

Cl

Cl

	 2170	 5.663
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	 21	 B21	 Cl

N
H

HN

O

O

O

	 4320	 5.364

	 22	 B22	
Cl

N
H

HN

O

N
	 4760	 5.322

	 23	 B23	
Cl

N
H

HN

O N
N

	 >10000	 5

	 24	 B24	
Cl

N
H

O

N

N
	 >10000	 5

	 25	 B25	
Cl

N
H

O

N

N

Cl

	 >10000	 5

	 26	 B26	

F

N
H

HN

O

N
	 205	 6.688

	 27	 B27	
F

N
H

HN

O

N
	 361	 6.442

	 28	 B28	
F

N
H

HN

O

N
	 151	 6.821

	 29	 B29	

F

N
H

HN

O

N
	 318	 6.497

	 30	 B30	
Cl

N
H

HN

O

N
	 79	 7.102

	 31	 B31	

F

N
H

HN

O

N
	 605	 6.218

	 32	 B32	

F

N
H

HN

O

N
	 279	 6.554

	 33	 B33	

F

N
H

H
N

O

N
	 319	 6.496

	 34	 B34	

Cl

N
H

H
N

O

N
	 212	 6.673

RESULTS AND DISCUSSION

	 In this study, QSAR models were derived 

using CB1 allosteric modulators to investigate 
the relationship between molecular descriptors 
and their potency. Chemically, the compounds 
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contain two different scaffolds, N, N'-diphenyl 
urea analogs and 1H indole-2-carboxamide 
derivatives. N, N'-diphenyl urea derivatives 
were substituted at both ring A (4th position is 
substituted with different electron-donating and 
withdrawing groups) and ring B (4th position 
is substituted with different aryl & hetero aryl 
groups), while 1H-indole-carboxamide derivatives 
were substituted on amide nitrogen directly or 
indirectly (ethylene linker) with various amine 
functionalities. Initially, all the structures were 
drawn and then converted to 3D formats. Then, 
a total of 1875 descriptors were calculated for 
all the compounds using the PaDEL tool. Next, 
using the V-WSP tool, 740 redundant descriptors 
were removed, based either on variance cut-
off (0.0001), or correlation cut-off (0.99) in 
addition to the inter-correlated descriptors. Total 
compounds were divided into a training set (80 
compounds: 70%) and a test set (34 compounds: 
30%). QSAR models were developed using the 
GA-MLR algorithm following OECD guidelines 
for assessment and validation35. Among all the 
derived models, two noteworthy models were 
selected whose equations are described as  
GA-MLR model-1 and GA-MLR model-2. The 
models were selected based on the acceptable 
values of  R2(>0.6) ,  Q2(>0.5) ,  Q2F1(>0.6) ,  
Scaled Average R2

m LOO(>0.5), Scaled Delta 
R2

m(LOO) (<0.2).

GA-MLR Model-1
MLR equation
	 pIC50 = 44.2595(+/-3.6206)-2.4957(+/-
0.2572) maxdO + 0.4716(+/-0.1113) minsssN 
-3.6929(+/-1.9321) SpMin2_Bhm.

	 The model-1 built using three parameters 
(SPMin2_Bhm, maxdO, and minsssN) showed 
a good correlation with the activity. The model 
could explain a 65% variance in the activity of 
compounds (R2: 0.65). The model fulfilled the 
criteria for statistical significance with R2 = 0.65 
(goodness of fit is satisfactory), Q2 = 0.62 (good 
predictive ability), and Q2 F1 = 0.63 (good external 
predictive ability)32-34. Training and test sets were 
evaluated using  internal and external validation 
metrics. The number of descriptors is acceptable 
as indicated by the minute difference (0.01) 

between R2 and R2
adj. The overfitting problem 

arises in QSAR studies due to high variance and 
complexity. This problem can be identified using 
the difference between R2 and Q2 (LOO). A value 
of 0.3 indicates over fitting problem in a QSAR 
model. For model-1, the value was 0.03, revealing 
no overfitting issues. 

	 As per model-1, SPMin2_Bhm and 
maxdO are negatively contributing while minsssN 
is positively contributing to the activity. The 
descriptors, maxdO, and minsssN represent 
electro-topological state atom (E-state) type 
descriptors whereas SPMin2_Bhm, descriptor 
explains the mass of the compounds26. The e-state 
of any atom is a sum of 1) the contribution of the 
intrinsic and topological status of that atom (Ii) and 
2) the effect of the environment (∆Ii). E-state value 
increases when electronegativity/electro density 
increases and the value decreases with branching 
in the molecule32. According to the equation, 
the high electronegativity of the doubly bonded 
oxygen, maxdO (carbonyl oxygen) is detrimental 
to the activity. Reducing the electron density of 
oxygen atoms might have a positive influence on 
the activity. It can be observed that substituted 
1H-indole 2- 2-carboxamides (B1-B34), where high 
electronegativity on carbonyl oxygen is high, are 
comparatively less potent compared to substituted 
N, N'-diaryl urea analogs. 

	 Minsss N (an atom-level topological 
index) is positively contributing to the activity. With 
this descriptor, it is possible to explain the potent 
activity of the dataset of compounds possessing 
substituted amine group (A1-A6, A14-A16, 
A18-A37) in comparison to compounds containing 
secondary amine group (A7-A13, A17, B6, B8-B10). 
E-states of atoms describe electrostatic potential, 
which is a suitable feature to analyze non-covalent 
interactions (suitable for protein-ligand interactions). 
SPMin2_Bhm is negatively contributing to the 
activity, indicating bulkiness as an unfavorable 
feature.  The low activity of indole carboxamides 
(B2, B3, B5, B9, B14, B23, B27, B28, B31, B32) 
and urea derivatives possessing bulkier groups on 
phenyl rings (A28-A31, A36, A37, C28, C29, C31 
C24, C25, C26) can be well correlated with their 
with high SPMin2_Bhm values.
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GA-MLR Model-2
MLR equation
	 pIC50 = 39.1907(+/-2.9279) -0.0527(+/-
0.0195) RDF55v-2.6088 (+/-0.2551) maxdO + 0.0858 
(+/-0.0299) VE3_D + 0.1064 (+/-0.0463) minHBint10 
-1.074 (+/-0.463) SpMin5_Bhs + 0.387 (+/-0.059) 
minsssN + 0.2582 (+/-0.0616) Crippen LogP

	 The model  showed a h igh ab i l i ty 
to explain the var iance (76%) in the CB1 
modulator activity. The improved model met 
the requirements for robustness, internal and 
external prediction ability with R2 = 0.76, Q2 = 
0.70, and Q2 F1 = 0.715.  Scaled Average R2

m 
LOO, Scaled Delta R2

m LOO, and CCC values 
were found to be 0.599, 0.16, and 0.79, better 
than model-1 (0.495, 0.236, and 0.69) indicating 
bet ter  model  predict iv i ty  and accuracy. In 
model 2, maxdO, minsssN, RDF55v, VE3_D, 
minHBint10, SpMin5_Bhs, and Crippen LogP  
showed a good correlation with the activity of 
the compounds. The negative contribution of 
maxdO, SPMin2_BHs (topological distance 
matrix describes relative I-state), and RDF55v is 
indicated in this model. RDF (radial distribution 
function) related descriptors are based on 
the distance distr ibution in the geometrical 
representation of a molecule. RDF55v, the 
van der Waals volume distr ibution in three 
d imens ions,  i s  computed  a t  a  rad ius  o f  
5.5 A using the unique geometric centers of each 
molecule. This descriptor highlights the crucial 
role of a molecular conformation and the role of van 
der Waals volume for activity at CB1 receptor33.  
The contribution of RDF55 revealed a higher 

possibility of interaction with the hydrophobic 
pocket of the receptor.

	 We could correlate the influence of  
this descriptor with conformational possibilities 
of N, N'-diaryl urea analogs. N, N'-diaryl urea 
analogs have unique conformational preferences 
and exhibit more dynamic behavior. It depends 
on the substitution whether the molecule prefers 
to be in either cis or trans-conformation. If the 
nitrogen atoms are unsubstituted, cis conformation 
is preferred for the molecule. Urea derivatives 
in the data set possess unsubstituted nitrogen 
atoms, suggesting a possible cis conformation 
for the molecules. The cis geometry of the urea 
derivatives might be a contributing factor for high 
potency compared to the indole carboxamides34. 
VE3_D is a 2D-matrix-based index. Higher values of 
VE3_D (less branching in a molecular structure) are 
favourable for the activity. This descriptor encodes 
the electronic, topological, and geometrical features 
of the compounds. Crippen Log P denotes the 
atomic contribution of log P and minHBint10 which 
is a 2D autocorrelation descriptor that denotes the 
count of E-state descriptors of strength for potential 
hydrogen bonds of path length 10. The dependence 
of activity on these descriptors indicates that atomic 
mass and electronic distribution are controlling the 
activity. In the present QSAR analysis, we were able 
to identify the difference in potency of diphenyl urea 
derivatives and indole carboxamides towards CB1 
is majorly due to the differences in the geometry of 
the molecules and due to variation in the electron 
density on the carbonyl oxygen.

Fig. 4. Contributions from various descriptors
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Table 3: Internal and External Validation Parameters (GA-MLR Model-1)

	 Parameter in Training Set	 Value	 Parameter in Test Set	 Value

	 R2	 0.65	 Q2 (F1) Test	 0.63
	 R2

adj	 0.64	 Q2 (F2) Test	 0.48
	 Standard Estimation of Error (SEE)	 0.45	 Scaled Average R2

m (Test)	 0.35
	 Q2 (LOO)	 0.62	 Scaled Delta R2

m (Test)	 0.30
	 SDEP (LOO)	 0.46	 CCC (Test)	 0.69
	 Scaled Average R2

m (LOO)	 0.49	 MAE, Test)	 0.42
	 Scaled Delta R2

m (LOO)	 0.23		
	Mean Absolute Error (MAE, Model Predicted)	 0.35		
	 MAE, LOO) 	 0.37		

Table 4: Internal and External Validation Parameters (GA -MLR Model-2)

	 Parameter in Training Set	 Value	 Parameter in Test Set	 Value

	 R2	 0.76	 Q2 (F1) Test	 0.71
	 R2

adj	 0.73	 Q2 (F2) Test	 0.60
	 SEE	 0.39	 Scaled Average R2

m (Test)	 0.55
	 Q2 (LOO)	 0.70	 Scaled Delta R2

m (Test)	 0.22
	 SDEP (LOO)	 0.41	 CCC (Test)	 0.79
	Scaled Average R2

m (LOO)	 0.59	 MAE, Test	 0.38
	 Scaled Delta R2

m (LOO)	 0.16		
	 MAE, Model Predicted	 0.27		
	  MAE (LOO)	 0.30		

	 The influence of various molecular 
descriptors was depicted in Fig. 4. The statistical 
significance of the derived QSAR models was 
validated using standard parameters, well recognized 
in the QSAR field35-37. However, the quality of QSAR 
models heavily depends on the quality of input data, 
similar to that of machine learning models. Currently, 
our data is limited to only two chemical classes of 
compounds. In the future, we will further improve the 
models by re-training the models with additional data.

CONCLUSION

	 N, N'-diphenyl urea and 1H-indole-
2-carboxamide derivatives can modulate the 
actions of CB1 receptors effectively. Though the 
atomic composition and molecular connectivity 
are different, these two classes of compounds 
exhibit promising CB1 receptor modulation. In 
the present QSAR investigations, two statistically 

significant models were derived from a set of 
114 CB1 modulators. Among all the obtained 
descriptors, we observed the prominent contribution 
of maxdO and RDF55v toward the activity. The 
receptor binding ability of N, N'-diphenyl urea, 
and 1H-indole-2-carboxamide derivatives might 
be inversely correlated with RDF55v (geometry) 
and maxdO (charge on the carbonyl oxygen). The 
present QSAR findings might contribute to design 
and finetune the CB1 allosteric modulators.
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