ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039
     FacebookTwitterLinkedinMendeley

Synthesis of magnetite nanocubes ( Fe3O4 ) from Iron ( III ) acetylacetonate by removal gas and higher temperature obtained

Nabil  Abdullah1,  Noman  Alkadasi1,2

1Hubei key lab of  Materials Chemistry & Service Failure , School of Chemistry & Chemical Engineering ,Huazghog  University of  Science and Technology, Wuhan , Hubei , 430074 China 2Department of  chemistry ,Faculty of  Education and Science ,Rada'a , Al-baida'a ,University , Yemen

DOI : http://dx.doi.org/10.13005/ojc/300331

Article Publishing History
Article Received on :
Article Accepted on :
Article Published : 21 Aug 2014
Article Metrics
ABSTRACT:

Fe3O4 nanocubes were synthesized  from Iron ( III ) acetylacetonate ( 99 % ,Across ),  4- biphenylcarboxylic  acid , oleic  acid   and benzyl ether 98 % at higher temperature with drying  under vacuum .  Fe3O4 nanocubes were obtained in powder form . The Fe3O4 nanocubes structures, nanoparticles  size, chemical composition, and magnetic properties were  characterized by  TEM ,U.V and XRD

KEYWORDS:

Iron ( III ) acetylacetonate; Fe3O4 nanocubes; properties and characterization.

Download this article as: 

Copy the following to cite this article:

Abdullah N, Alkadasi N. Synthesis of magnetite nanocubes ( Fe3O4 ) from Iron ( III ) acetylacetonate by removal gas and higher temperature obtained. Orient J Chem 2014;30(3).


Copy the following to cite this URL:

Abdullah N, Alkadasi N. Synthesis of magnetite nanocubes ( Fe3O4 ) from Iron ( III ) acetylacetonate by removal gas and higher temperature obtained. Orient J Chem 2014;30(3). Orient J Chem 2014;30(3). Available from: http://www.orientjchem.org/?p=4280


Introduction

Recently, considerable research has been focused on iron oxides due to their potential uses in  pigments, magnetic drug targeting, magnetic resonance imaging for clinical diagnosis, recording material and catalysts, etc. [1- 6]. The magnetic nanoparticles exhibit super paramagnetic behavior because of the infinitely small coercivity arising from the negligible energy barrier in the hysteresis of the magnetization loop of the particles as predicted . There  are many various ways to prepare Fe3O4 nanoparticles, which have been reported in other papers, such as arc discharge, mechanical grinding, laser ablation, microemulsions, and high temperature decomposition of organic precursors, etc [7- 10].

These methods are  used to prepare magnetite nanoparticles with several controllable particle diameters. However, well-dispersed aqueous Fe3O4 nanoparticles have met with very limited success [ 11- 13 ].

In this paper,  preparation of  Fe3O4 nanocubes  is reported by  removal  of the gas as well as higher temperature  was used to obtain  Fe3O4  nanocubes in powder form under  oven vacuum   at  80 0C temperature .

Experiment

Materials

 Physical parameters of  Iron ( III ) acetylacetonate ( 99 % ,Across ),  4- biphenylcarboxylic  acid , oleic  acid   and Benzyl ether 98 %   are reported in table 1 , 2 ,3 and  4 respectively.

Trade Name Iron ( III ) acetylacetonate , 99 %
Appearance Red powder
Molecular weight 353.17
content 25 G R
Company ACROS ,Organics ,U.S.A

Table 1.  General Characteristics of  Iron ( III ) acetylacetonate ( 99 % ,Across )

 

Trade Name 4- biphenylcarboxylic  a cid, 97  %
Appearance White  powder
Molecular weight 198.22
density 1.185
Company Adamas –beta Reagent  Co,Ltd, China

Table 2.  General characteristics of   4- biphenylcarboxylic  acid 97  %

 

Trade Name Oleic  A cid   ( C18 H34 O2 ) 99.9 %
Appearance Liquid
Molecular weight 282.46
Density ( 20 0C g/m ) 0.870 – 0.90
pH ( 250 g /l ,25 0C 3.0 – 5.0
Company Sinopharm Chemical  Reagent Co,Ltd, China

Table 3.  General characteristics of  oleic  acid 

 

Trade Name Benzyl ether  ( C14 H14 O1 ),  98 %
Appearance Liquid
Molecular weight 198.26
Density ( 25 0C g/m ) 1.043 g / ml at 25 0C
pH ( 250 g /l ,25 0C 3.0 – 5.0
Melting point  1.5 – 3.5 0C
Boling point 298  0C
Company Al-drich  Chemistry

Table 4.  General characteristics of  benzyl ether 98 %   

Notes

Molecular sieves type 4 A 98.5% ,d = 0.69 – 0.75   heated them  in  oven at temperature at 400 0C for 2-3 hrs  and then put them in 50 ml Benzyl ether 98 %  in flash to remove water before starting the  experiment .

Synthesis of  Magnetite Nanocubes

Synthesis of ferrimagnetic nanocubes ( Fe3O4 )  was carried out under nitrogen (N 2).Typical synthesis of  mangntic nanocubes ( 0.71g,2 mmol ) Iron ( III ) acetylacetonate ( Fe ( acac)3  mixed with ( 0.41 g,2.1 mmol )  4-biphenylacarboxylic a cid  added to mixture  ( 1.129 g , 4 mmol ) oleic acid and  ( 10.40 g ,10 ml ) benzyl ether . The mixture solution was degassed at room temperature  for 1 hour .The solution was then heated to 290 0C  at the rate of 20 0C /min with vigorous magnetic stirring at 290 rpm to get ferrimagnetic nanocubes. where the temperature was held for 30 min when temperature reached  290 0C  .  After cooling the solution to room temperature , a mixture of  ( 40 ml ) toluene  and ( 10 ml ) hexane was added to solution . The solution was then centrifuged at 5000 rpm  for minutes to precipitate the magnetite nanocubes .The precipitate was washed using  ( 10 ml ) chloroform ( CHCl3 ) . Then after that used   oven vacuum   to obtain  Fe3O4  nanocubes in  powder  form at  80 0C temperature [14- 18].

Transmission Electron Microscope  ( TEM ) Test

For TEM Test , a small amount of sample was dissolved in  3mL of  deionized water  in test tube and the solution was stirred by ultra-sonication  . Then 10 µ L sample was transferred to clean Copper Grid and kept for drying for TEM test. The TEM micrographs of samples were observed by CM 12 Philips Transmission Electron Microscope.

UV Results 

For UV results, a small amount of sample in test tube and then was dissolved in  3mL chloroform ( CHCl3 ) into the sample and the   solution was stirred by ultra-sonication to make sure the sample was uniform . Then solution was transferred to cavity of spectrophotometer to get the test.  Spectra were recorded at 300 to 750 nm.

Results and Discussion

Plate  1,2,3 ,4,5,6,7 and 8 ( TEM )  shows the top-view TEM images of the Fe3O4   nanocubes  plate  ( TEM ). The surface of  Fe3O4 nanocubes  shows several large meandering wrinkles. The size  of  Fe3O4  nanocubes  about ( between  39.62 – 48.35 nm )  is  clear from  TEM image . Fig.1. X-ray diffraction  showed the graph all of  Magnetite Fe3O4  nanocubes  . Fig .2.  U.V shown the graph all of  Fe3O4  nanocubes    respectively dispersed  in chloroform .

Acknowledgements

This work was supported by  UNESCO/People’s Republic of China ( Great wall ) and Al-Baida’a ,University , Republic of  Yemen .

References

  1. Maiti.R , Chakraborty .M , J. Alloy and Compod., 2008 , 458 , 450– 456.
  2. Riyanto .A, Listiawati .D, Suharyadi .E, Abraha .d. K. Prosiding PertemuanIlmiah XXVI HFI Jateng & DIY, Purworejo , 2012, 14 April, 203-207.
  3. Asuhan. S, Wan .H.L, Zhao. S, Deligeer .W, Wu. H.Y, Song.L, Tegus .O. Ceramics Int.  .2012 , 38 , 6579 – 6584.
  4. Zhoua .X , Shi.Y,Rena .L, Bao .S , Han.Y, Wu.S, Zhang.H,Zhong.L , Zhang. Q,J. Solid State Chem.  , 2012 , 196 , 138–144.
  5. Wang.B ,Wei .Q, Qu. S,Int. J. Electrochem. Sci., 2013 , 8 ,  3786 – 3793.
  6. Sun.J, Zhou.S, Hou.P, Yang.Y, Weng.J,Li.X,Li.M,J. Biomed Mater Res 80A : 2007, 333 –341.
  7. Jiang.W, Yang.H.C, Yang. S.Y, Horng.H.E ,Hung.J.C,Chene.Y.C , Hong.C.-Y.,J.Mag. Mag. Mater. 2004 , 283 ,  210 – 214.
  8. Hu.P, Zhang .S, Wang.H, Pan.D, Tiana.J, Tang.Z, Volinsky.A.A ,J.Alloy. Compd., 2011 , 509 , 2316 – 2319 .
  9. J.O. Park, K.Y. Rhee, S.J. Park ,Appl. Surf. Sci., 2010 , 256 , 6945 – 6950.
  10. Ur Rahman.O, Mohapatra.S. C, Ahmad. S,Mater. Chem. Phys, 2012,132 ,  196 – 202 .
  11. Mukherjee.J, Ramkumar.J ,Chandramouleeswaran. S. ,Shukla.R , Tyagi. A. K.J. Radioanal.Nucl.Chem., 2013 , 22 January .
  12. Miyauchi.M,Simmons.T.J, JianjunMiao,Gagner.J.E., Shriver.Z. H.,Aich.U, Dordick .J. S. and Linhardt.R. J, ACS Appl. Mater. Int. 2011, 3, 1958 – 1964.
  13. Wang .L.-L. , Jiang. J.-S.Nanoscale Res Lett , 2009, 4 :1439 – 1446 .
  14. Nowosielski.R, Babilas.R  ,J.Achievements in Mater. Manuf. Eng., 2011 , 48 / 2 , 153 -160.
  15. Mihajlović.G, Xiong. P, and von Molnár. S. Appl. Phys. Lett. 2005 , 87, 112502 -1-3 .
  16. Etier. M ,Shvartsman .V. V. , Gao .Y , Landers.J , Wende.H&Lupascu. D.C ,Ferroelectrics, Taylor & Francis ., 2013, 347-177–  355- 185 .
  17. Astuti, Claudia.G., Noraida, and Ramadhani .M.,Makara J. Sci, August . 2013, Vol. 17 ,2 ,58- 62 .
  18. Kim .D,Lee .N, park .M,Kim.B.H,An.K, and Hyeon .T,J.Am .Chem .Soc. 2009 , 131,  454- 455.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.