ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039
     FacebookTwitterLinkedinMendeley

Simple and Selective Synthesis of 1,3-Benzoxazine Derivatives

Ali Abdullah Al-Qahtani1,  Turki M. Al-Turki1, Ahmed Amine Mousa1, Sara Abdullah Al-Mazroa2, M. Khan1 and Hamad Z. Alkhathlan1*

1Department of Chemistry, College of Science, King Saud University,  P.O.Box 2455 , Riyadh - 11451, Saudi Arabia.

2Department of Chemistry, College of Science, Princess Nora Bint Abdulrahman University, Riyadh, Saudi Arabia.

Corresponding Author E-mail: khathlan@ksu.edu.sa

Article Publishing History
Article Received on :
Article Accepted on :
Article Metrics
ABSTRACT:

A simple and selective synthesis of 1,3-benzoxazine-2,4-dione and 4-methylene-1,3-benzoxazine-2-one derivatives is reported from the reaction of Schiff bases and triphosgene. The selective synthesis of those 1,3-benzoxazine derivatives were found to be dependent on the type of substituents present on the Schiff base.  

KEYWORDS:

1,3-benzoxazine; triphosgene; Schiff bases; 1,3-benzoxazine-2,4-dione

Download this article as: 

Copy the following to cite this article:

Al-Qahtani A. A, Al-Turki T. M, Mousa A. A, Al-Mazroa S. A, Khan M, Alkhathlan H. Z. Simple and Selective Synthesis of 1,3-Benzoxazine Derivatives. Orient J Chem 2012;28(1).


Copy the following to cite this URL:

Al-Qahtani A. A, Al-Turki T. M, Mousa A. A, Al-Mazroa S. A, Khan M, Alkhathlan H. Z. Simple and Selective Synthesis of 1,3-Benzoxazine Derivatives. Orient J Chem 2012;28(1). Available from: http://www.orientjchem.org/?p=23832


Introduction

Triphosgene [bis(trichloromethyl)-carbonate] a white crystalline compound, has emerged as a diversified reagent for the synthesis of varieties of heterocyclic ring systems1. It has several advantages such as safe in handling, less hazardous, and high reactivity over its gaseous congener, phosgene and is being frequently used in many organic synthesis as a substitute for the hazardous gaseous phosgene. Recently, triphosgene has been effectively used in the preparation of ureas2, Bischler-Napieralski reaction,3 carbamoyl azides,4 and β-lactams5. On the other hand, Schiff bases (Imines) are considered as an important class of compounds and due to their diverse reactivity, they are widely used in industrial synthetic processes6 as well as in many laboratory organic synthesis7. They are particularly more useful in the preparation of heterocyclic ring systems8 and non natural β-aminoacids9. Consequently, several synthetic protocols have been developed for their synthesis10.

Benzoxazine, on the other hand, are very important class of heterocyclic compounds and play an important and central role in pharmacologically and therapeutically active substances11 as well as in natural products12. They possesses broad spectrum of biological activities13 behaving as antirheumatic,13a neuroprotective antioxidants,13b anticancer,13c antihypertensive,13d and other activities13e-g. Efavirenz a 3,1-benzoxazine derivative also famous with its brand name Sustiva and Stocrin, is a non-nucleoside reverse transcriptase inhibitor (NNRTI)  and is being effectively used as part of highly active antiretroviral therapy (HAART) for the treatment of the human immunodeficiency virus (HIV) since its approval by the FDA in 199814. Various analogs of Efavirenz have also been reported to posses promising anti-HIV activity15. Similarly, 1,3-benzoxazine and its derivatives have also been reported to exhibit a wide range of biological activities16 including antimicrobial,16d-e CNS agents,16f antagonism to progesterone receptor,16g antitumour,16h-i antiviral,16j-k antithrombotic,16l anti-inflammatory,16m antidiabetic and hypolipidaemic16n effects, inhibitors of human leucocyte elastase,16o serotonin reuptake,16p K+ channel opener,16q anti-HIV,16r-s. In addition, 1,3-benzoxazines have been reported to transform into their 3,1-benzoxazine isomer17. Recently, 1,3-benzoxazine-2,4-dione and related derivatives have been reported as a potential useful agent for treating infections caused by Mycobacterium species18. Although 1,3-benzoxazines have been reported to play a significant role in the field of medicinal and pharmaceutical chemistry, perusal of literature revealed that comparing to other series of benzoxazines, only few methods are available for the synthesis of 1,3-benzoxazine-2,4-diones19.

In continuation of our interest in the synthesis of heterocyclic compounds,20 we report herein the synthesis of Schiff bases and their cyclization into 1,3-benzoxazine-2,4-diones. It is worth mentioning here that synthetic protocols for the preparation of 1,3-benzoxazine-2,4-diones are very scanty19a and to the best of our knowledge, synthesis of 1,3-benzoxazine-2,4-diones have never been reported earlier from the reaction of Schiff bases and  triphosgene.

Materials and Methods

All the chemicals and reagents used were purchased from Sigma-Aldrich. Melting points were determined on a Gallen Kamp melting point apparatus and are uncorrected. 1H and 13C-NMR spectra were recorded with a JEOL ECP-400 spectrophotometer. The NMR samples were prepared in CDCl3 with tetramethylsilane (TMS) as an internal standard. The chemical shifts and coupling constants (J) were expressed in d and Hz, respectively. MS spectra were recorded on Shimadzu QP5050A GC/MS system. The thin layer chromatography (TLC) was carried out on pre-coated Silica gel 60 F254 (0.2 mm, Merck) plates. The developed TLC plates were visualized under UV light at 254 and 365 nm.

Preparation of the Schiff bases

The Schiff bases 2a-u were prepared using the procedure previously described20d.

Preparation of 1,3-benzoxazine derivatives

A 250 ml three neck round bottom flask containing the appropriate Schiff base (7.26 mmol) was equipped with reflux condenser, dropping funnel and an adapter to allow the passage of N2 gas. Dichlorometahne (30 ml) and Et3N (1 ml) were added to dissolve the Schiff base followed by a drop wise addition under N2 atmosphere of a solution of 0.7 equivalent of triphosgene in 15 ml of dichloromethane. The mixture was then stirred at room temperature for one hour followed by reflux for 2 hours. The mixture was washed with distilled water, dried over magnesium sulphate and evaporated to dryness and crystallized from a mixture of hexane and ethanol to give pure 1,3-benzoxazine derivatives.

Results and Discussion

In a previous study,20d we reported the synthesis of various 4-methylene-1,3-benzoxazine derivatives involving the reaction of triphosgene and Schiff bases substituted with electron withdrawing groups. However, when the same reaction was carried out using triphosgene and Schiff bases substituted with electron donating groups under optimal conditions, the desired 4-methylene-1,3-benzoxazine was not produced. Instead, an unidentified product was obtained in high yield. Herein, we report on further detail study of this reaction, which led to the development of a facile, convenient and selective synthesis of either 1,3-benzoxazine-2,4-diones or 4-methylene-1,3-benzoxazine in single step .

The Schiff bases 2a-2u (Table 1) prepared according to the previously described method,20d were dissolved in a mixture of DCM and Et3N (20:2) and treated with triphosgene. Two different products were obtained using the same reaction conditions (Scheme 1). The first one is 1,3-benzoxazine-2,4-dione 3a-3h obtained when Z=R and X, Y=H, OMe. The second one is 4-methylene-1,3-benzoxazine-2-one 4i-4u, obtained when; (i) Z=R and X, Y=Cl (ii) Z=Ar and X, Y=H, OMe, Cl (Table 2). Careful observation of the results indicate that substituents of the Schiff bases, 2a-2l (derived from aliphatic amines) played a key role in the selective synthesis of either 1,3-benzoxazine-2,4-dione 3a-3h or 4-methylene-1,3-benzoxazine-2-one 4i-4u. 1,3-benzoxazine-2,4-dione 3a-3h were obtained when Schiff bases were substituted with electron donating groups (Z=R and X, Y=H, OMe). Whereas 4-methylene-1,3-benzoxazine-2-one 4i-4l were formed when Schiff bases were substituted with electron withdrawing groups (Z=R and X, Y=Cl). On the other hand, substituents of the Schiff bases 2m-2u (derived from aromatic amines) have no effects on the formation of final products. They synthesized only 4-methylene-1,3-benzoxazine-2-one, 4m-4u as sole products when reacted with triphosgene under optimal conditions.

scheme 1 scheme 1



Click here to View scheme

 

Table 1: Schiff bases, 2a-u

X

Y

Z

Producta

Yieldb (%)

H

H

n-propyl

2a

99

H

H

n-butyl

2b

96

H

H

Isobutyl

2c

72

H

H

n-hexyl

2d

85

OMe

H

n-propyl

2e

99

OMe

H

n-butyl

2f

92

OMe

H

Isobutyl

2g

87

OMe

H

n-hexyl

2h

85

Cl

Cl

n-propyl

2i

98

Cl

Cl

Isopropyl

2j

78

Cl

Cl

Isobutyl

2k

80

Cl

Cl

n-hexyl

2l

92

H

H

Phenyl

2m

62

H

H

2′-Methylphenyl

2n

60

H

H

3′-Chlorophenyl

2o

60

Cl

Cl

Phenyl

2p

70

Cl

Cl

2′-Methylphenyl

2q

78

Cl

Cl

3′-Chlorophenyl

2r

68

OMe

H

Phenyl

2s

68

OMe

H

2′-Methylphenyl

2t

72

OMe

H

3′-Chlorophenyl

2u

77

a Identified by 1H, 13C, EI-MS and by comparison of their spectral data with those of related compounds.

b Isolated Yield

Table 2: 1,3-benzoxazine-2,4-diones, 3a-h and 4-methylene-1,3-benzoxazine-2-one, 4i-u

X

Y

Producta

Yield b (%) of 3 & 4

H

H

3a

84

H

H

3b

79

H

H

3c

72

H

H

3d

75

OMe

H

3e

85

OMe

H

3f

82

OMe

H

3g

87

OMe

H

3h

85

Cl

Cl

4i

92

Cl

Cl

4j

78

Cl

Cl

4k

74

Cl

Cl

4l

73

H

H

4m

86

H

H

4n

69

H

H

4o

60

Cl

Cl

4p

65

Cl

Cl

4q

58

Cl

Cl

4r

62

OMe

H

4s

51

OMe

H

4t

63

OMe

H

4u

77

a Identified by 1H, 13C,  EI-MS and by comparison of their spectral data with those of related compounds.

b Isolated Yield

Derivatives of 1,3-benzoxazine-2,4-diones 3a-h showed two clear downfield signals at 152.7 and 160.7 ppm in the 13C NMR spectrum confirming the presence of two carbonyl carbons (C-2 and C-4 respectively). Moreover, in contrast to the 4-methylene-1,3-benzoxazine-2-ones 4i-u, the exocyclic double bond signal appears  at 4.95 and 135 ppm in their 1H and 13C NMR spectra, these signals were not present in the spectra of 3a-h confirming the absence of the exocyclic methylene group at C-4. Finally, the MS spectra of 1,3-benzoxazine-2,4-diones 3a-h showed clear and distinct molecular ion peaks for each compound agreeing with the expected molecular weight.

Derivatives of 4-methylene-1,3-benzoxazine 4i-u exhibited similar spectroscopic data to their analogous compounds previously reported20d.

Concluson

In conclusion, we have developed a very simple and selective synthesis of either 1,3-benzoxazine-2,4-diones or 4-methylene-1,3-benzoxazine-2-ones from the reaction of Schiff bases and triphosgene in single step. Comparing to other series of benzoxazines, synthesis of 1,3-benzoxazine-2,4-diones are very rare and to the best of our knowledge they are being prepared for the first time from the reaction of Schiff bases and  triphosgene.

3-Propyl-3,4-dihydro-2H-1,3-benzoxazine-2,4-dione (3a)

M.p. 73oC; 1H NMR: 0.95 (t, J=7.32 Hz, 3H), 1.70 (m, 2H), 3.96 (t, J=7.32 Hz, 2H), 7.27 (d, J=8.06 Hz, 1H), 7.35 (t, J=8.06 Hz, 1H), 7.66 (t, J=8.06 Hz, 1H), 8.07 (d, J=8.06 Hz, 1H); 13C NMR: 11.3, 20.9, 44.2, 114.3, 116.5, 125.4, 128.2, 136.1, 148.2, 152.7, 160.7; EI-MS: m/z 205 (M+), 164, 120, 92, 63.

3-Butyl-3,4-dihydro-2H-1,3-benzoxazine-2,4-dione (3b)

M.p. 70oC; 1H NMR: 0.93 (t, J=7.32 Hz, 3H), 1.66 (m, 2H), 1.83 (m, 2H), 4.00 (t, J=7.32 Hz, 2H), 7.27 (m, 1H), 7.35 (m, 1H), 7.65 (m, 1H), 8.05 (m, 1H); 13C NMR: 13.8, 20.1, 29.7, 42.6, 114.3, 116.4, 125.4, 128.1, 136.1, 148.2, 152.7, 160.7; EI-MS: m/z 219 (M+), 164, 120, 92, 63.

3-Isobutyl-3,4-dihydro-2H-1,3-benzoxazine-2,4-dione (3c)

M.p. 87oC; 1H NMR: 0.92 (d, J=6.6 Hz, 6H), 2.18 (m, 1H), 3.87 (d, J=7.32 Hz, 2H), 7.26 (d, J=8.06 Hz, 1H), 7.35 (t, J=8.06 Hz, 1H), 7.68 (t, J=8.06 Hz, 1H), 8.06 (d, J=8.06 Hz, 1H); 13C NMR: 20.1, 27.1, 49.4, 114.2, 116.5, 125.43, 128.3, 136.1, 148.5, 152.7, 160.9; EI-MS: m/z 219 (M+), 164, 120, 92, 64, 56.

3-Hexyl-3,4-dihydro-2H-1,3-benzoxazine-2,4-dione (3d)

M.p. 61oC; 1H NMR: 0.87 (t, J=7.32 Hz, 3H), 1.29 (m, 6H), 1.65 (m, 2H), 3.99 (t, J=7.32 Hz, 2H), 7.27 (m, 1H), 7.35 (m, 1H), 7.67 (m, 1H), 8.06 (m, 1H); 13C NMR: 14.1, 22.6, 26.52, 27.6, 31.5, 42.8, 114.3, 116.5, 125.4, 128.2, 136.0, 148.2, 152.7, 160.6; EI-MS: m/z 247 (M+), 205, 177, 164, 120, 92, 64, 56.

6-Methoxy-3-propyl-3,4-dihydro-2H-1,3-benzoxazine-2,4-dione (3e)

M.p. 81oC; 1H NMR: 0.96 (t, J=7.32 Hz, 3H), 1.70 (m, 2H), 3.86 (s, 3H), 3.97 (t, J=7.32 Hz, 2H), 7.20 (d, J=8.80 Hz, 1H), 7.23 (dd, J=8.80 & 2.93 Hz, 1H), 7.45 (d, J=2.93 Hz, 1H);

13C NMR: 11.3, 20.9, 44.3, 56.1, 108.6,  114.6, 117.8, 124.8, 147.0, 148.3, 156.9, 160.8; EI-MS: m/z 235 (M+), 150, 107, 79, 65, 51.

3-butyl-6-methoxy-3,4-dihydro-2H-1,3-benzoxazine-2,4-dione (3f)

M.p. 86oC; 1H NMR: 0.92 (t, J=7.32 Hz, 3H), 1.37 (m, 2H), 1.67 (m, 2H), 3.85 (s, 3H), 3.99 (t, J=7.32 Hz, 2H), 7.18 (d, J=8.80 Hz, 1H), 7.22 (dd, J=8.80 & 2.93 Hz, 1H), 7.43 (d, J=2.93 Hz, 1H); 13C NMR: 13.8, 20.1, 29.7, 42.6, 56.1, 108.6, 114.6, 117.8, 124.8, 147.0, 148.3, 156.9, 160.8; EI-MS: m/z 249 (M+), 150, 107, 79, 65 53.

3-Isobutyl-6-methoxy-3,4-dihydro-2H-1,3-benzoxazine-2,4-dione (3g)

M.p. 100oC; 1H NMR: 0.94 (d, J=6.59 Hz, 6H), 2.19 (m, 1H), 3.86 (s, 3H), 3.88 (d, J=7.32 Hz, 2H), 7.20 (d, J=8.80 Hz, 1H), 7.23 (dd, J=8.80 & 2.93 Hz, 1H), 7.44 (d, J=2.93 Hz, 1H) 13C NMR: 20.1, 27.1, 49.5, 56.1, 108.73, 114.5, 117.8, 124.8, 147.0, 148.5, 156.9, 161.1; EI-MS: m/z 249 (M+), 150, 107, 79, 65, 53.

3-Hexyl-6-methoxy-3,4-dihydro-2H-1,3-benzoxazine-2,4-dione (3h)

M.p. 80oC; 1H NMR: 0.85 (t, J=7.32 Hz, 3H), 1.29 (m, 6H),  1.64 (m, 2H), 3.85 (s, 3H), 3.98 (t, J=7.32 Hz, 2H), 7.18 (d, J=9.52 Hz, 1H), 7.21 (dd, J=9.52 & 2.93 Hz, 1H), 7.44 (d, J=2.93 Hz, 1H) 13C NMR: 14.1, 22.6, 26.5, 27.6, 31.5, 42.9, 56.1, 108.6, 114.6, 117.8, 124.7, 147.0, 148.3, 156.9, 160.7; EI-MS: m/z 277 (M+), 150, 107, 79, 65, 53.

6,8-Dichloro-4-methylene-3-propyl-3,4-dihydro-2H-1,3-benzoxazine-2-one (4i)

M.p. 87oC; 1H NMR: 0.94 (t, J=7.32 Hz, 3H), 1.70 (m, 2H), 3.75(t, J=7.32 Hz, 2H), 4.54(d, J=2.93 Hz, 1H), 4.94 (d, J=2.93 Hz, 1H), 7.35 (d, J=2.19 Hz, 1H), 7.39 (d, J=2.19 Hz, 1H); 13C NMR: 11.2, 18.9, 47.5, 89.8, 119.3, 121.9, 122.8 129.8, 130.8, 136.1, 143.5, 146.4; EI-MS: m/z 275 (M++4), 273 (M++2), 271(M+), 256, 229, 186, 123, 87, 63.

6,8-Dichloro-3-isopropyl-4-methylene-3,4-dihydro-2H-1,3-benzoxazine-2-one (4j)

M.p. 92oC; 1H NMR: 1.51 (m, 6H), 4.26 (m, 1H), 4.74 (d, J=2.93 Hz, 1H), 4.96 (d, J=2.93 Hz, 1H), 7.35 (d, J=2.19 Hz, 1H), 7.34 (d, J=2.19 Hz, 1H); 13C NMR:  19.1, 52.0, 92.8, 121.3, 122.0, 122.4, 129.7, 130.5, 137.6, 143.6, 145.6; EI-MS: m/z 275 (M++4), 273 (M++2), 271(M+), 256, 229, 188, 123, 97, 87, 70, 60.

6,8-Dichloro-3-isobutyl-4-methylene-3,4-dihydro-2H-1,3-benzoxazine-2-one (4k)

M.p. 107-109oC; 1H NMR: 0.95 (d, J=6.59 Hz, 6H), 2.17 (m, 1H), 3.72 (d, J=7.32 Hz, 2H), 4.56 (d, J=2.93 Hz, 1H), 4.98 (d, J=2.93 Hz, 1H), 7.39 (d, J=2.19 Hz, 1H), 7.41 (d, J=2.19 Hz, 1H); 13C NMR: 20.1, 25.3, 52.3, 90.4, 119.3, 122.0, 122.8, 129.8, 130.9, 136.3, 143.6, 146.9; EI-MS: m/z 289 (M++4), 287 (M++2), 285 (M+), 230, 186, 123, 56.

6,8-Dichloro-3-hexyl-4-methylene-3,4-dihydro-2H-1,3-benzoxazine-2-one (4l)

M.p. 52oC; 1H NMR: 0.85 (t, J=7.32 Hz, 3H), 1.29 (m, 6H), 1.68 (m, 2H), 3.78 (t, J= 8.06 Hz, 2H),  4.54 (d, J=2.93 Hz, 1H), 4.94 (d, J=2.93 Hz, 1H), 7.39 (d, J=2.19 Hz, 1H), 7.36 (d, J=2.19 Hz, 1H); 13C NMR: 14.1, 22.6, 25.5, 26.5, 31.5, 46.0, 89.7, 119.3, 121.9, 122.8, 129.8, 130.8, 136.1, 143.5, 146.3; EI-MS: m/z 317 (M++4), 315 (M++2), 313 (M+), 298, 230, 186, 123, 55.

4-Methylene-3-phenyl-3,4-dihydro-2H-1,3-benzoxazine-2-one (4m)

M.p. 155oC; 1H NMR: 3.85 (s, 1H), 4.88 (s, 1H), 7.13(d, J=7.32 Hz, 1H), 7.17 (t, J= 7.32 Hz, 1H),  7.31 (d, J=8.80 Hz, 2H), 7.39 (t, J=8.80 Hz, 1H), 7.45 (t, J=7.32 Hz, 1H), 7.51 (t, J=8.80 Hz, 2H), 7.57 (d, J=7.32 Hz, 1H); 13C NMR: 90.2, 116.6, 117.0, 123.8, 125.0, 128.6, 129.0, 130.2, 131.1, 137.8, 140.5, 147.4, 148.7; EI-MS: m/z 237 (M+), 219, 165, 118, 90, 77, 51.

4-Methylene-3-(2′-methylphenyl)-3,4-dihydro-2H-1,3-benzoxazine-2-one (4n)

M.p. 91oC; 1H NMR: 2.23 (s, 3H), 3.78 (s, 1H), 4.85 (s, 1H), 7.14 (d, J=8.06 Hz, 1H), 7.20 (t, J=8.06 Hz, 1H), 7.22 (m, 1H), 7.34-7.38 (m, 3H),  7.40(t, J=8.06 Hz, 1H), 7.58 (d, J=8.06 Hz, 1H); 13C NMR: 17.2, 89.3, 116.3, 117.0, 123.8, 125.0, 127.9, 128.5, 131.2, 129.4, 131.7, 136.2, 136.3, 139.2, 146.9, 148.8; EI-MS: m/z 251 (M+), 236, 192, 102, 89, 63.

3-(3′-chlorophenyl)- 4-Methylene-3,4-dihydro-2H-1,3-benzoxazine-2-one (4o)

M.p. 130oC; 1H NMR: 3.87 (d, J=2.93 Hz, 1H), 4.90 (d, J=2.93 Hz, 1H), 7.13 (m, 1H), 7.20 (m, 1H), 7.34-7.38 (m, 2H), 7.43-7.49 (m, 3H), 7.56 (m, 1H); 13C NMR: 90.5, 116.3, 117.0, 123.8, 125.1, 127.1 129.1, 129.4, 131.2, 131.3,  135.6, 138.8, 140.2,  147.2,  148.6; EI-MS: m/z 273 (M++2), 271(M+), 235, 191, 165, 118, 95, 89, 75, 63.

6,8-dichloro-4-Methylene-3-phenyl-3,4-dihydro-2H-1,3-benzoxazine-2-one (4p)

White needles. M.p. 145oC; 1H NMR: 3.96 (d, J=2.93 Hz, 1H), 4.87 (d, J=2.93 Hz, 1H), 7.30 (d, J=7.32 Hz, 2H), 7.44 (d, J=2.19 Hz, 1H), 7.46 (d, J=2.19 Hz, 1H), 7.48 (t, J=7.32 Hz, 1H),  7.54 (t, J=7.32 Hz, 2H); 13C NMR: 92.7, 119.2, 122.0, 123.2, 128.4, 129.3, 130.1, 130.4, 131.1,  137.3, 139.1,  143.7, 145.9;  EI-MS: m/z 309 (M++4), 307 (M++2), 305 (M+), 287, 186, 123, 95, 77, 51.

6,8-dichloro-4-Methylene-3-(2-methylphenyl)-3,4-dihydro-2H-1,3-benzoxazine-2-one (4q)

M.p. 162oC; 1H NMR: 2.21 (s, 3H), 3.89 (d, J=2.93 Hz, 1H), 4.85 (d, J=2.93 Hz, 1H), 7.18 (m, 1H), 7.32-7.38 (m, 3H), 7.45 (m, 2H);  13C NMR: 17.1, 91.2, 118.9, 122.1, 123.2, 128.0, 128.3, 129.6, 130.1, 131.2, 131.9, 135.8, 136.0, 137.9, 143.8, 145.3; EI-MS: m/z 323 (M++4), 321 (M++2), 319(M+), 304, 269, 186, 159, 123, 102, 63.

6,8-dichloro-3-(3-chlorophenyl)-4-Methylene-3,4-dihydro-2H-1,3-benzoxazine-2-one (4r)

M.p. 175oC; 1H NMR: 3.99 (d, J=2.93 Hz, 1H), 4.91 (d, J=2.93 Hz, 1H), 7.31, (d, J=2.19 Hz, 1H), 7.43 (dd, J=7.32 & 2.19 Hz, 1H), 7.44 (t, J=7.32Hz, 1H), 7.46 (d, J=2.19 Hz, 1H), 7.60 (d, J=2.19 Hz, 1H), 7.66 (d, J=2.19 Hz, 1H);  13C NMR: 93.0, 119.0, 122.0, 123.2,  126.9, 129.0, 129.8, 130.3, 131.3,  135.8, 138.2,  138.8, 143.5, 145.7; EI-MS: m/z 345 (M++6), 343 (M++4), 341 (M++2), 339 (M+), 304, 269, 186, 123, 113, 75, 63.

6-Methoxy -4-Methylene-3-phenyl-3,4-dihydro-2H-1,3-benzoxazine-2-one (4s)

M.p. 128oC; 1H NMR: 3.82 (s, 3H), 3.84 (s, 1H), 4.82 (s, 1H), 6.94 (dd, J=8.80 & 2.19 Hz, 1H), 7.00 (d, J=2.19 Hz, 1H), 7.06 (d, J=8,80 Hz, 1H), 7.31 (d, J=7.32Hz, 2H), 7.44 (t, J=7.32 Hz, 1H), 7.53 (t, J=7.32 Hz, 2H);  13CNMR: 55.9, 90.2, 117.0, 107.3,  117.8,  118.0, 128.6, 129.0, 130.2, 137.9, 140.6, 142.9, 147.6, 156.5; EI-MS: m/z 267 (M+), 252, 148, 133, 105, 77, 51.

6-Methoxy -4-Methylene-3-(2‘-methylphenyl)-3,4-dihydro-2H-1,3-benzoxazine-2-one (4t)

M.p. 128oC; 1H NMR: 2.22 (s, 3H), 3.83 (s, 3H), 3.87 (s, 1H), 4.79 (s, 1H), 6.95 (dd, J=8.80 & 2.93 Hz, 1H), 7.02 (d, J=2.93 Hz, 1H), 7.07 (d, J=8,80 Hz, 1H), 7.20 (m, 1H),  7.33-7.36 (m, 3H);  13C NMR: 17.2, 55.9, 89.2, 107.3, 127.9, 128.5, 129.3,  131.7, 136.2, 139.3, 143.0, 116.7, 117.8, 118.0, 136.5, 147.1 156.6; EI-MS: m/z 281 (M+), 266, 133, 105, 91, 77, 51.

3-(3′-chlorophenyl)-6-Methoxy-4-Methylene-3,4-dihydro-2H-1,3-benzoxazine-2-one (4u)

Light brown powder. M.p. 165oC; 1H NMR: 3.83 (s, 3H), 3.99 (d, J=2.93 Hz, 1H), 4.91 (d, J=2.93 Hz, 1H), 6.95 (dd, J=8.80 & 2.93 Hz, 1H), 7.00 (d, J=2.93 Hz, 1H), 7.06 (d, J=8,80 Hz, 1H), 7.22 (d, J=1.47 Hz, 1H), 7.33 (d, J=1.47 Hz, 1H), 7.44 (dd, J=8.06 & 1.47 Hz, 1H), 7.47 (t, J=8.06 Hz, 1H);13C NMR: 55.9, 90.5, 107.3, 116.8, 117.9, 118.0, 127.1, 129.2, 129.4,  131.2, 135.6, 138.9, 140.3, 142.7, 147.3 156.6; EI-MS: m/z 303 (M++2), 301, 265, 148, 133, 105, 89, 77, 51.

References

  1.  (a) Costi R., Santo R.D., Artico M. and Massa S., J. Heterocycl. Chem., 39: 81 (2002); (b) Nefzi A., Ostresh J.M., Giulianotti M. and Hougten R.A., Tetrahedron Lett., 39: 8199 (1998); (c) Prashad M., Hu B., Kim H.Y., Har D., Repic O. and Blacklock T.J., Tetrahedron Lett., 48: 2087 (2007); (d) Chung Y.J., Jung Y.S., Seong C.M. and Park N.S., Bull. Korean Chem. Soc., 19: 1117 (1998).
  2. Gool M.V., Bartolome J.M. and Macdonald G.J., Tetrahedron Lett., 49: 7171 (2008).
  3. Saito T., Yoshido M. and Ishikawa T., Heterocycles,  54: 437 (2001).
  4. Gumaste V.K. and Deshmukh A.R.A.S., Tetrahedron Lett., 45: 6571 (2004).
  5. Krishnaswamy D., Bhawal B.M. and Deshmukh A.R.A.S., Tetrahedron Lett., 45: 6571 (2004).
  6. (a) Gawronski J., Wascinska N. and Gajewy J., Chem. Rev., 108: 5227 (2008); (b) Adams J.P., J. Chem. Soc. Perkin Trans.1, 125 (2000).
  7. (a) Layer R.W., Chem. Rev., 63: 489 (1963); (b)  Hou X.L., Wu J., Fan R.H., Ding C.H., Luo Z.B., Dai L.X., Synlett, 181(2006).
  8. (a) Diederen J.J.H., Fruhauf H.W., Hiemstra H., Vrieze K. and Pfeffer M., Tetrahedron Lett., 39: 4111 (1998); (b) Doyle M.P., Hu W.H. and Timmons D., J. Org. Lett., 3: 3741 (2001);  (c) Anniyappan M., Nagarajan R. and Perumal P.T., Synth. Commun., 32: 99 (2002); (d) Krishnaswamy D., Govande V.V., Gumaste V.K., Bhawal B.M. and Desmukh A.R.A.S., Tetrahedron, 58: 2215 (2002); (e) Kirschbaum S. and Waldman H., J. Org. chem., 63: 4936 (1998); (f) Xu Z.R. and Lu X.Y., J. Org. Chem., 63: 5031 (1998); (g) Nefkens G.H.L. and Zwanenburg B., Tetrahedron, 41: 6063 (1985); (h) McCarthy J.R., Barney C.L., O’Donnell M.J. and Huffman J.C., J. Chem. Soc. Chem. Commun., 469 (1987); (i) Cushman M. and Madaj E.J., J. Org. chem., 52: 907 (1987).
  9. (a) Ferwanah A.R.S., Synth. Commun., 33: 243 (2003); (b) Silveira C.C., Vieira A.S., Braga A.L. and Russowsky D., Tetrahedron, 61: 9312 (2006); (c) Bellassoued M., Ennigrou R., Gil R. and Lensen N., Synth. Commun., 28: 3955 (1998).
  10. (a) Nixon T.D., Whittlesey M.K. and Williams J.M.J., Dalton Trans., 753 (2009); (b) Fujita K.I., Enoki Y., Yamaguchi R., Tetrahedron, 64: 1943 (2008); (c) Tillack A., Hollmann D., Michalik D. and Beller M., Tetrahedron Lett.,  47: 8881 (2006); (d) Boopathy G., Zhang J. and David M., Angew. Chem. Int. Ed., 49: 1468 (2010); (e) Kundu A., Shakil N.A., Saxena D.B., Kumar J. and Walia S.J., Environ. Sci. Health B., 44: 428 (2009); (f) Jiang G., Chen J., Huang J.S. and Che C.M., Org. Lett., 11: 4568 (2009); (g) Blackburn L. and Taylor R.J.K., Org. Lett., 3: 1637 (2001); (h) Orito K., Hatakeyama T., Takeo M., Uchiito S., Tokuda M. and Suginome H., Tetrahedron, 54: 8403 (1998).
  11. (a) Has J., Jakopin Z., Bonrstnar T., Stegnar M. and Kikelj D., J. Med. Chem., 51: 5617 (2008); (b) Yang W., Wang Y., Ma Z., Golla R., Stouch T., Seethala R., Johnson S., Zhou R., Gungr T., Feyen J.H.M. and Dickson J.K., Bioorg. Med. Chem. Lett., 14: 2327 (2004); (c) Kimberly J., Dougherty B., Anne B., Elzbieta J., Piotr K. and David J.M., J. Neurosci., 25: 584 (2005); (d) Lee H.J., Ban J.Y. and  Seong Y.H., Life Sci., 78: 294 (2005); (e) Thomas A., Ross R.A., Saha B., Mahadevan A., Razdan K. and Pertwee R. G., Eur. J. Pharmacol., 487: 213 (2004); (f) Caliendo G., Perissutti E., Santagada V., Fiorino F., Severino B., Cirillo D., Demmanuele R.D.V.B., Lippolis R.D.V.B,L., Pinto A. and Sorrentino R., Eur. J. Med. Chem., 39: 815 (2004); (g) Achari B., Mandal S.B., Dutta P.K. and Chowdhury C., Synlett., 2449 (2004); (h) Bourlot A.S., Sanchez I., Dureng G., Guillaumet G., Massingham R., Monteil A., Winslow E., Pujol M.D. and Merour J.Y., J. Med. Chem., 41: 3142 (1998).
  12. (a) Bravo H.R. and Lazo W., J. Agric. Food Chem., 44:1569 (1996) (b) Brown K.S. and Djerassi C., J. Am. Chem. Soc., 86: 2451 (1964); (c) Nakagawa E., Amano T., Hirai N. and Iwamura H., Phytochemistry, 38: 1349 (1995).
  13. (a) Matsuoka H., Ohi N., Mihara M., Suzuki H., Miyamoto K., Maruyama N., Tsuji K., Kato N., Akimoto T., Takeda Y., Yano K. and Kuroki T., J. Med. Chem., 40: 105 (1997); (b) Largeron M., Lockhart B., Pfeiffer B. and Fleury M.B., J. Med. Chem., 42: 5043 (1999);  (c) Jiao P.F., Zhao B.X., Wang W.W., He Q.X., Wan M.S., Shin D.S. and Miao J.Y., Bioorg. Med. Chem. Lett., 16: 2862 (2006); (d) Touzeau F., Arrault A., Guillaumet G., Scalbert E., Pfeiffer B., Rettori M., Renard P., and Merour J.Y., J. Med. Chem., 46: 1962 (2003); (e) Kuroita T., Marubayashi N., Sano M., Kanzaki K., Inaba K. and Kawakita T., Chem. Pharm. Bull., 44: 2051 (1996); (f) Caliendo G., Grieco P., Perissutti E., Santagada V., Santini A., Albrizio S., Fattorusso C., Pinto A. and Sorrentino R., Eur. J. Med. Chem., 33: 957 (1998); (g) Sugimoto Y., Otani T., Oie S., Wierzba K. and Yamada Y., J. Antibiot., 43: 417 (1990).
  14.  (a) Franco M., J. Antimicrob. Chemother., 64: 910 (2009) (b) Pedersen O.S. and Pedersen E.B., Synthesis, 479 (2000).
  15. (a) Magnus N.A., Confalone P.N. and Storace L., Tetrahedron Lett., 41: 3015 (2000); (b) Cocuzza A.J., Chidester D.R., Cordova B.C., Jeffrey S., Parsons R.L., Bacheler L.T., Erickson S.V., Trainor G.L. and Ko S.S., Bioorg. Med. Chem. Lett., 11: 1177 (2001).
  16. (a) Kahus A.H. and Bundgaard H., Acta Pharm. Nord., 1991, 3, 45; (b) Devaux G., Renaudie C., Boineau F., Mesnard P. and Demarquez N., Eur. J. Med. Chem. Chim. Ther., 9: 44 (1974). (c) Waisser K., Kubicova L., Buchta V., Kubanova P., Bajerova K., Jiraskova L., Bednarik O., Bures O. and Holy P., Folia Microb., 47: 488 (2002); (d) Chylinska J.B., Janowiec M. and Urbanski T., Br. J. Pharmacol., 43: 649 (1971); (e) Latif N., Mishriky N. and Massad F., Aust. J. Chem., 35: 1037 (1982); (f) Mokrosz M., Kowalski P., Kowalska T., Majka Z., Duszynska B., Bojarski A. J., Fruzinski A., Wojciechowska J.K., Wesolowska A., Klodzinska A., Tatarc-zynska E. and Chojnacka-Wojcik E., Arch. Pharm., 332: 373 (1999); (g) Kern J.C., Terefenko E.A., Fensome A., Unwalla R., Wrobel J., Zhu Y., Cohen J., Winneker R., Zhang Z. and Zhang P., Bioorg. Med. Chem. Lett., 17: 189 (2007); (h) Bolognese A., Correale G., Manfra M., Lavecchia A., Mazzoni O., Novellino E., Barone V., Colla P.L, and Loddo R., J. Med. Chem., 45: 5217 (2002); (i) Chylinska J.B. and Urbanski T., J. Med. Chem., 6: 484 (1963); (j) Jarvest R.L., Connor S.C., Gorniak J.G., Jennings L.J., Serafinowska H.T. and West A., Bioorg. Med. Chem. Lett., 7: 1733 (1997); (k) Abood N.A., Schretzman L.A., Flynn D. L., Houseman K.A., Wittwer A.J., Dilworth V.M., Hippenmeyer P.J. and Holwerda B. C., Bioorg. Med. Chem. Lett., 7: 2105 (1997); (l) Hsieh P.W., Hwang T.L., Wu C.C., Chang F.R., Wang T.W. and Wu Y.C., Bioorg. Med. Chem. Lett., 15: 2786 (2005); (m) Hsieh P.W., Chang F.R., Chang C.H., Cheng P.W., Chiang L.C., Zeng F.L., Lin K.H. and Wu Y.C., Bioorg. Med. Chem. Lett., 14: 4751 (2004), (n) Madhavan G.R., Chakrabarti R., Reddy K.A., Rajesh B.M., Balaju V., Rao P.B., Rajagopalan R. and Iqbal J., Bioorg. Med. Chem.,14: 584 (2006), (o) Colson E., Wallach J. and Hauteville M., Biochimie, 87: 223 (2005); (p) Atkinson P.J., Bromidge S.M., Duxon M.S., Gaster L.M., Hadley M.S., Hammond B., Johnson C.N., Middlemiss D.N., North S.E., Price G.W., Rami H.K., Riley G.J., Scott C.M., Shaw T.E., Starr K.R., Stemp G., Thewlis K.M., Thomas D.R., Thompson M., Vong A.K.K. and Watson J.M., Bioorg. Med. Chem. Lett., 15: 737 (2005); (q) Yamamoto S., Hashinguchi S., Miki S., Igata Y., Watanabe T. and Shiraishi M., Chem. Pharm. Bull., 44: 734 (1996);  (r) Pedersen O.S., Pedersen E.B., Synthesis, 479 (2000); (s) Cocuzza A.J., Chidester D. R., Cordova B.C., Jeffrey S., Parsons R.L., Bacheler L. T., Viitanen S.E., Trainor G.L. and Ko S.S., Bioorg. Med. Chem. Lett., 11: 1177 (2001).
  17. Tachikawa R., Wachi K. and Terada A., Chem. Pharm. Bull., 30: 559 (1982).
  18. (a) Waisser K., Petrlikova E., Perina M., Klimesova V., Kunes J., Palat K.J, Kaustova J., Dahse H.M.and Mollmann U., Eur. J. Med. Chem., 45: 2719 (2010); (b) Waisser K., Perina M., Kunes J., Klimesova V., Kaustova J., Il Farmaco, 58: 1137 (2003); (c) Waissera K., Gregora J., Kubicovaa L., Klimesova V., Kunes J., Machacek M. and  Kaustova J., Eur. J. Med. Chem., 35: 733 (2000).
  19. (a) Ines S.R., Maria L.D.S. and Luiz A.S.R., Heterocycles, 65: 311 (2005); (b) Devaux G., Renaudie C., Boineau F., Mesnard P. and Demarquez N., Eur. J. Med. Chem. Chim. Ther., 9: 44 (1974); (c) Wagner G., Briel S. and Leistner S., Pharmazie, 35: 49 (1980); (d) Zaleska B. and Lis S., Pharmazie, 50: 150 (1995); (e) Boontheung P. and Perlmutter P., Tetrahedron Lett., 39: 2629 (1998); (f) Joshi B.S., Srinivasan R., Talavdekar R.V. and Venkataraman K. Tetrahedron, 11: 133 (1960); (g) Crum J.D. and Franks Jr D.A. J. Heterocycl. Chem., 2: 37 (1965). (h) Liebigs D.G. Ann. Chem.,1513 (1981) (i) Fischer J.P. and Papadopoulos E.P., J. Heterocyclic. Chem., 20: 1159 (1983).
  20. (a) Alkhathlan H.Z., Tetrahedron, 59: 8163 (2003); (b) Alkhathlan H.Z., Al-Saad M.A., Al-Hazmi H.M., Al-Farhan K.A. and Mousa A.A., J. Chem. Res., M 1023:  S 473 (2002), (c) Alkhathlan H.Z., Al-Saad M.A., Al-Hazmi H.M., Al-Farhan K.A. and Mousa A. A., J. Chem. Res., M 1201: S 587 (2002), (d) Alkhathlan H.Z., Synth. Commun., 34: 71 (2004); (e) Al-Bogami A.S., Al-Majid A.M., Al-Saad M.A., Mousa A.A., Al-Mazroa S.A. and Alkhathlan H.Z., Molecules, 14: 2147 (2009).


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.