ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039
     FacebookTwitterLinkedinMendeley

Theoretical investigation of the zirconium carbide nano-sheet: A study of NMR, NBO, EPR and Polar

Roya Rouhani

Department of chemistry, Science and research branch, Islamic Azad University, Tehran, Iran

  Corresponding Author Email: Rrouhani.r@gmail.com

DOI : http://dx.doi.org/10.13005/ojc/310330

Article Publishing History
Article Received on :
Article Accepted on :
Article Published : 15 Sep 2015
Article Metrics
ABSTRACT:

This study was carried out to investigate the zirconium carbide nano-sheet. Zirconium carbide is one of the metal carbides with unique chemical and physical properties such as high melting point (~3540°C), high hardness (~25 Gpa), wear resistance and high thermal conductivity, and has been shown to have a wide range of applications in various industries. Ab initio methods were carried out for the zirconium carbide nano-sheet using the Gaussian 09 program for the first time. Thus, B3LYP was selected for calculating the natural bond orbital (NBO), Nuclear magnetic resonance (NMR), Electron paramagnetic resonance (EPR) and polar.

KEYWORDS:

zirconium carbide nano-sheet; NBO; NMR; EPR and polar

Download this article as: 

Copy the following to cite this article:

Rouhani R. Theoretical investigation of the zirconium carbide nano-sheet: A study of NMR, NBO, EPR and Polar, EPR and Polar. Orient J Chem 2015;31(3).


Copy the following to cite this URL:

Rouhani R. Theoretical investigation of the zirconium carbide nano-sheet: A study of NMR, NBO, EPR and Polar. Orient J Chem 2015;31(3). Available from: http://www.orientjchem.org/?p=10909


Introduction

The three known allotropes of carbon are amorphous carbon, graphite, and diamond. New allotropes of carbon that are being synthesized around the world include fullerenes, carbon nano tubes (CNTs) and graphene due to their fantastic physical and chemical properties1-20. Graphene is a single-atom-thick planar sheet of carbon atoms hexagonally arranged in a honeycomb crystal lattice, and has gained lots of attention due to its structure and electrical properties21-25. Graphene is unanimously considered a very promising material to be used in various fields, such as energy production and storage, gas detection, and electronics. In the view of structure, it has one or a few layers thickness of sp2-hybridized carbon atoms arranged in a honeycomb pattern, which makes it to possess electrical, optical, electrochemical and mechanical properties. Therefore, several methods for the synthesis of graphene and its derivatives have been developed 26-30. This study was carried out to explore zirconium carbide nano-sheet (ZrC nano-sheet). ZrC nano-sheet is similar to that of graphene, except that Zr is one among the alternative carbons. Zirconium carbide, due to its unique physical and chemical properties, such as high melting point (~3540°C), high hardness (~25 Gpa), wear resistance, high thermal conductivity, excellent mechanical properties and good chemical stability at high temperature, is used in industries, especially for high temperature applications31-41. It is used in different applications such as cutting tools, covering of the tip of the drill, grinding wheels and abrasives for mechanical as well as structural components in chemical and electronic industries. Also, it has potential applications as coating material for nuclear fuel 42-44.

In this study, the molecular mechanic and ab-initio methods were applied to calculate the natural bond orbital (NBO), Nuclear magnetic resonance (NMR), Electron paramagnetic resonance (EPR) and polar of ZrC nano-sheet, using the Gaussian 09 program package.

Materials and Methods

Ab initio methods were carried out for the zirconium carbide nano-sheet using the Gaussian 09 program for the first time (Figure 1.). B3LYP was selected for calculating the natural bond orbital (NBO), Nuclear magnetic resonance (NMR), Electron paramagnetic resonance (EPR) and polar.

Results and Discussion

The EHOMO and ELUMO calculated using the B3LYP method were -0.18646 and -0.16892 (a.u.) , respectively. The Band Gap (Fermi energy), Dipole moment, Quadrupole moment, Traceless Quadrupole moment and Octapole moment were calculated using the B3LYP method shown in Table 1.

Table 1: Polar determinant and band gap  (Fermi energy) obtained for ZrC nano-sheet.

Dipole moment (Debye) 35.215
Quadrupole moment (Debye-Ang) -64119124.96
Traceless Quadrupole moment (Debye-Ang) -98480.8764
Octapole moment (Debye-Ang) -79586.9398
Hexadecapole moment (Debye-Ang) 6.53E+11
Distance matrix (angstrom) -1.46E+54
Band Gap Energy (a.u.) -0.01754

 

Tables 2, 3 and 4 show the calculated parameters of electron paramagnetic resonance (EPR) for ZrC nano-sheet. Atomic bonds, charge of atoms and voltages were determined using the B3LYP method. The ∆V, ∆Vʹ and ∆V Mulliken for all bonds were calculated.

The formula used given as follow:

formula1

 

Where (V1,V2, ∆V12 and ∆Vʹ12), (V5,V6, ∆V56 and ∆Vʹ56) and (V9,V10,∆V910 and ∆Vʹ910) were calculated from the obtained data of EPR that include; (Electrostatic properties “Atomic unit” (X,Y,Z)), (Electric Field Gradient(XY,XZ,YZ)) and (Electric Field Gradient “tensor representation” Eigen values), respectively. Also, (V11,V12, ∆V1112 and ∆Vʹ1112), (V3,V4,∆V34 and ∆Vʹ34) and

Table 2. EPR calculated parameters for the ZrC nano-sheet.

Table 2: EPR calculated parameters for the ZrC nano-sheet.

 


Click here to View table

 

(V7,V8,∆V78 and ∆Vʹ78) were calculated from the obtained data of EPR that include; (Electric Field Gradient “tensor representation” (3XX-RR, 3YY-RR, 3ZZ-RR)), (Electric Field Gradient (XX,YY,ZZ)) and (Electric Field Gradient Eigen values), respectively.

By comparison of the obtained voltages (voltage difference) ;  ∆V, ∆Vʹ and ∆VMulliken in Tables 2 and 3 were in similar range, but in Table 4, ∆V and ∆Vʹ were in a different range of ∆VMulliken.

Table 3: EPR calculated parameters for the ZrC nano-sheet.

atomic bond

V9 (a.u.)

V10 (a.u.)

∆V910 (V)

∆Vʹ910 (V)

V11 (a.u.)

V12 (a.u.)

∆V1112 (V)

∆Vʹ1112 (V)

C1-H26

0.5015

1.3454

10.8302

22.8781

0.4169

0.8813

5.9601

12.5899

C1-H27

0.5015

0.2203

10.0598

7.6233

0.4169

0.5749

2.1556

4.2834

C1-Zr15

0.5015

0.5447

0.2692

1.1712

0.4169

0.5436

0.7891

3.4348

Zr15-C4

0.5447

1.2056

4.1198

17.9170

0.5436

1.2049

4.1212

17.9278

Zr15-C3

0.5447

0.6960

0.9417

4.1017

0.5436

0.6959

0.9489

4.1289

C3-H31

0.6960

1.2653

7.3051

15.4337

0.6959

0.4621

2.9995

6.3383

C3-Zr14

0.6960

0.5961

0.6220

2.7083

0.6959

0.5960

0.6220

2.7083

Zr14-C8

0.5961

1.2506

7.4232

17.7435

0.5960

1.2506

4.0795

17.7462

C8-Zr20

1.2506

0.6258

3.8937

16.9383

1.2506

0.6258

3.8938

16.9383

Zr20-C4

0.6258

1.2056

3.6129

15.7184

0.6258

1.2049

3.6086

15.6994

C4-Zr16

1.2056

0.5077

4.3502

18.9201

1.2049

0.5042

4.3675

18.9960

Zr16-C5

0.5077

2.0533

9.6336

41.9012

0.5042

1.1409

3.9686

17.2609

Zr16-C10

0.5077

1.5770

6.6657

28.9887

0.5042

1.2071

4.3804

19.0556

C10-Zr21

1.5770

0.2103

7.5384

37.0512

1.2071

0.3656

5.2444

22.8131

Zr21-H36

0.3676

0.6902

2.5776

8.7457

0.3656

0.2707

0.7574

2.5727

Zr21-C9

0.3676

1.1280

4.7390

20.6144

0.3656

1.1278

4.7505

20.6632

C9-Zr20

1.1280

0.3198

3.1330

21.9103

1.1278

0.6258

3.1291

13.6092

C9-Zr24

1.1280

0.4314

4.3416

18.8848

1.1278

0.4312

4.3416

18.8848

Zr24-H39

0.4314

0.6808

1.9929

6.7612

0.4312

0.2219

1.6718

5.6741

Zr24-C13

0.4314

1.1359

4.3905

19.0990

0.4312

1.1359

4.3920

19.1044

C13-Zr19

1.1359

0.6269

3.1723

13.7990

1.1359

0.6269

3.1723

13.7990

C13-Zr23

1.2776

0.4209

4.4568

23.2251

1.1359

0.4206

5.7254

19.3918

Zr23-H38

0.4209

0.6796

2.0664

7.0134

0.4206

0.2250

1.5624

5.3027

Zr23-C12

0.4209

1.0254

3.7620

16.3880

0.4206

1.0252

3.7684

16.3907

C12-Zr22

1.0254

0.5658

2.8641

12.4598

1.0252

0.5658

2.1960

12.4543

C12-Zr25

1.0254

0.2866

4.6051

20.0289

1.0252

0.2173

5.0356

21.9022

Zr25-H41

0.2866

0.6656

3.0283

10.2747

0.2173

0.6647

3.5740

12.1290

Zr25-H43

0.2866

0.6438

2.8540

9.6837

0.2173

0.2867

0.2433

1.8814

Zr22-C11

0.5658

1.2776

4.4366

19.2969

0.5658

0.9183

2.1960

9.5563

Zr22-C7

0.5658

1.2273

4.1227

17.9333

0.5658

1.2267

4.1198

17.9170

Zr18-C7

0.5796

1.2273

4.0363

17.5591

0.5794

1.2267

4.0348

17.5483

Zr18-C6

0.5796

0.6358

0.3499

1.5236

0.5794

0.6273

0.2980

1.2986

C6-H33

0.6358

1.2751

8.2036

17.3314

0.6273

0.5017

1.6113

3.4050

C6-Zr17

0.6358

0.4387

1.2283

5.3434

0.6273

0.4163

1.3147

5.7202

Zr17-C11

0.4387

1.2776

5.2286

22.7426

0.4163

0.9183

3.1291

13.6092

C7-Zr19

1.2273

0.6269

3.7425

16.2768

1.2267

0.6269

3.7382

16.2606

Zr19-C8

0.6269

1.2506

3.8880

16.9085

0.6269

1.2506

3.8880

16.9085

Zr14-C8

0.5961

1.2506

7.4232

17.7435

0.5960

1.2506

4.0795

17.7462

Zr14-C2

0.5961

0.7081

0.6969

3.0363

0.5960

0.7078

0.6955

3.0309

C2-H30

0.7081

1.2580

7.0574

14.9078

0.7078

0.4551

3.2428

6.8507

Zr18-C2

0.5796

0.7081

0.8006

3.4836

0.5794

0.7078

0.7992

3.4809

 

 Figure 1. Structure of ZrC nano-sheet.

Figure 1: Structure of ZrC nano-sheet.

 

Click here to View figure

 

Table 4 Table 4 

 
Click here to View table

 

The NMR calculated parameters include isotropic shielding tensor (σiso), anisotropic shielding tensor (σaniso), asymmetry (η), span (Ω) and skew (K)45-51.

In this study, the NMR calculated parameters of ZrC nano-sheets obtained using the B3LYP method are shown in Tables 5 to 8.  The equations used are as follows 51:

Formula

 

Where η, Ω, K, ξ were calculated for Zr, H and C, in ZrC nano-sheets. Radii (R) is the distance of He or Ne from ZrC nano-sheets.

Some of the asymmetry in the range
0 ≤  η  ≤1   is not listed in Tables
5-8 and the amount in the table is empty.

Figures 2 and 3 show the diagram of η, σaniso, σiso, HF(Hartree-Fock) and K of  ZrC nano-sheets with different distance (R) of He and Ne.

Data obtained for natural bond orbital (NBO) are shown in Tables 9 to 15.

E2, Ei- Ej and F (i,j) represent the energy hyper conjugative interaction (stabilization energy), Energy difference between donor and accepter NBO orbital, and the Fock matrix element between i and j orbitals, respectively.

The highest and lowest stabilization energy in ZrC nano-sheet were 181.25 and 0.93 kcal/mol for [LP*(2) Zr18, BD*(1) C7-Zr18] and [BD (1) C4-Zr15, RY*(8) Zr20], respectively.

Table 10 shows the bonding and anti-bonding orbitals and hybridization of atomic orbitals in ZrC nano-sheet.

The orbital occupancy is the number of electrons, or “natural population” of the orbital, and the orbital energy is in atomic units: 1 a.u. = 627.5 kcal/mol.

The number of core (CR), 2-center bond (BD) and lone pair (LP) NBOs are in the natural Lewis structure; these labels give the type (BD for 2-center bond, CR for
1-center core pair, LP for 1-center valence lone pair, RY* for 1-center Rydberg, and BD* for 2-center anti-bond) the un-starred and starred labels corresponding to the Lewis and non-Lewis NBOs, respectively.

Tables 11-15 allow quick identification of the principal delocalizing acceptor orbitals associated with each donor NBO, and their topological relationship with NBO, that is, whether they are attached to the same atom (geminal, “g”), or to an adjacent bonded atom (vicinal, “v”), or to a more remote (“r”) site. For example, from Tables 11-15, the highest-occupancy, highest-energy and primarily delocalized were 1.99986 electrons, -10.0997 a.u. and 137(v) for CR (1) C5, respectively. ,However, the lowest-occupancy, was 0.00002 electrons for RY*(9) Zr15

 Figure 2: Diagrams of η, σaniso, σiso, HF and K of   ZrC nano-sheets with different distance (R) of He. Figure 2: Diagrams of η, σaniso, σiso, HF and K of   ZrC nano-sheets with different distance (R) of He. 



Click here to View figure

 

Figure 3: Diagrams of η, σaniso, σiso, HF and K of ZrC nano-sheets with different distance (R) of Ne. Figure 3: Diagrams of η, σaniso, σiso, HF and K of
ZrC nano-sheets with different distance (R) of Ne.


Click here to View figure

 

Table 5: NMR calculated parameters (ppm) for ZrC nano-sheets.

Element

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

σiso

141.96

43.16

56.39

-179.19

29136.49

-6.20

-442.05

-1046.76

-1425.72

-21223.15

-403.53

σaniso

65.40

180.07

160.56

1707.28

124456.00

188.85

779.98

1385.54

5094.02

78717.80

601.11

Ω

105.56

207.48

204.91

1909.02

132544.60

233.63

890.17

2247.63

6016.72

79720.61

846.94

K

-0.52

0.00

0.13

0.57

0.75

0.23

0.50

-0.53

0.39

0.94

-0.16

η

0.46

0.87

0.41

0.79

0.55

0.27

ξ

43.60

120.04

107.03

1138.18

82971.09

125.90

519.99

923.69

3396.01

52478.53

400.74

R

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

σiso

153.45

3.88

24.62

-14.04

40918.97

-5.50

-509.65

-430.98

-1043.45

29525.46

-709.89

σaniso

102.46

142.55

85.92

210.45

164676.10

143.82

464.45

499.71

5622.66

104482.51

1241.93

Ω

178.92

191.69

159.17

2120.08

171737.20

191.02

540.21

726.27

7577.59

106169.90

1565.31

K

-0.71

-0.03

0.02

0.98

0.84

0.01

0.44

-0.25

-0.03

0.94

0.17

η

0.26

0.00

0.34

0.74

0.31

0.07

ξ

68.31

95.03

57.28

1406.30

109784.10

95.88

309.63

333.14

3748.44

69655.01

827.95

R

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

σiso

154.57

6.62

25.92

5.64

42357.01

0.36

-490.29

-417.69

-1164.12

30616.87

-703.76

σaniso

101.78

143.07

83.64

2164.73

169836.30

137.31

464.25

633.11

5771.51

107709.13

1185.63

Ω

183.01

187.17

159.02

2181.16

176587.80

186.86

536.26

804.41

7900.71

109413.57

1503.48

K

-0.78

0.06

-0.90

0.97

0.85

-0.06

0.46

0.15

-0.08

0.94

0.15

η

0.95

0.21

0.34

0.73

0.31

0.04

ξ

67.86

95.38

55.76

1443.15

113224.20

91.54

309.50

422.07

3847.67

71806.09

790.42

R

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

σiso

158.23

20.11

37.46

37.43

45630.36

-7.09

-517.82

-466.09

-903.80

32698.15

-687.47

σaniso

104.51

138.38

99.08

2218.61

181147.00

111.53

234.93

539.41

5431.11

114385.07

1442.14

Ω

188.01

179.31

179.48

2244.48

187815.40

156.62

416.65

788.02

7176.18

116222.32

1675.77

K

-0.78

0.09

-0.79

0.95

0.86

-0.15

-0.74

-0.26

0.03

0.31

0.44

η

0.89

0.20

0.82

0.28

0.80

0.77

0.32

1.00

ξ

69.68

92.25

66.05

1479.07

120764.70

74.36

156.62

359.61

3620.74

76256.71

961.42

R

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

σiso

159.08

8.84

25.70

141.39

55597.53

-21.07

-704.10

-359.77

-1938.58

40217.86

-563.20

σaniso

132.00

117.29

135.06

2693.51

216551.90

60.15

831.45

1173.07

7488.47

137412.19

2091.16

Ω

242.05

138.06

191.27

2762.75

221357.60

100.79

1097.97

1260.22

10938.03

139459.76

2300.61

K

-0.82

0.40

-0.18

0.87

0.91

0.61

0.03

0.72

-0.26

0.00

0.64

η

0.20

0.68

0.87

0.04

0.84

0.83

0.28

0.67

0.31

0.78

ξ

88.00

78.19

90.04

1795.68

144368.00

40.10

0.83

782.05

4992.31

91608.13

1394.11

R

2.30

2.30

2.30

2.30

2.30

2.30

2.30

2.30

2.30

2.30

2.30

σiso

183.40

133.88

151.11

-28.19

33177.84

128.20

-382.42

-673.18

127.77

24859.92

-1650.17

σaniso

74.46

503.06

529.69

1201.57

140085.90

543.48

1826.70

1421.05

2922.23

88258.42

4137.09

Ω

108.27

537.19

585.71

1461.90

147807.00

572.39

2010.45

1919.16

3450.95

89278.21

5489.37

K

-0.08

0.00

0.62

0.29

0.75

0.12

0.63

0.04

0.39

0.95

0.00

η

0.73

0.21

0.42

0.30

0.20

0.18

0.62

0.89

0.27

0.90

ξ

49.64

335.38

353.13

801.05

0.59

362.32

1217.80

947.37

1948.15

58838.95

2758.06

R

3.90

3.90

3.90

3.90

3.90

3.90

3.90

3.90

3.90

3.90

3.90

 

Table 6. NMR calculated parameters (ppm) for ZrC nano-sheets.

Table 6: NMR calculated parameters (ppm) for ZrC nano-sheets.

  

Click here to View table

 

Table 7: NMR calculated parameters (ppm) for ZrC nano-sheets.

Element

Zr23

Zr24

Zr25

H26

H27

H28

H29

H30

H31

H32

H33

σiso

-256.11

-381.93

-395.75

160.25

69.74

69.73

30.79

30.80

34.80

34.80

27.55

σaniso

301.41

112.91

121.69

450.61

106.18

106.20

21.92

21.91

15.46

15.39

39.26

Ω

387.79

441.70

182.54

519.96

126.02

126.04

23.55

23.51

22.54

22.43

60.95

K

0.11

-0.10

-0.33

0.47

-0.42

0.37

0.72

0.73

-0.26

-0.26

-0.42

η

0.79

0.38

0.46

0.46

0.32

0.32

ξ

200.94

75.28

81.12

300.40

70.79

70.80

14.61

14.61

10.31

10.26

26.18

R

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

σiso

-305.22

-371.76

-309.43

200.21

80.21

80.61

27.69

28.83

29.46

29.79

23.43

σaniso

54.93

138.01

60.33

621.78

156.13

156.80

26.61

26.16

31.08

31.82

34.77

Ω

69.67

254.47

98.78

711.72

180.91

181.82

43.03

41.18

46.40

47.53

48.10

K

0.15

-0.83

-0.56

0.16

0.45

0.45

-0.53

-0.46

-0.32

-0.32

-0.11

η

1.00

0.32

0.36

0.32

0.23

0.24

0.51

ξ

36.62

92.00

40.22

414.52

104.09

104.53

17.74

17.44

20.72

21.22

23.18

R

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

σiso

-301.52

-374.73

-310.52

205.03

81.85

82.29

27.37

28.24

29.51

30.30

23.88

σaniso

60.85

146.38

59.77

643.38

163.02

163.63

28.94

26.60

32.26

33.28

34.60

Ω

68.48

265.86

96.70

735.61

188.21

189.19

46.32

43.36

48.20

49.88

47.58

K

0.18

-0.80

-0.53

0.50

0.46

0.46

-0.50

-0.55

-0.32

-0.33

-0.09

η

0.38

0.33

0.24

0.15

0.30

0.31

0.48

ξ

40.56

97.59

39.84

428.92

108.68

109.09

19.29

17.73

21.51

22.19

23.06

R

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

σiso

-325.20

-363.81

-305.35

-219.59

85.73

86.16

27.01

28.38

32.11

32.10

22.08

σaniso

51.56

141.61

52.14

686.10

172.25

173.63

31.23

22.70

30.48

27.32

38.55

Ω

95.38

268.93

102.14

779.00

197.31

198.71

34.32

27.20

42.12

39.48

50.79

K

-0.84

-0.89

-0.96

0.52

0.49

0.50

0.64

0.34

-0.10

-0.23

0.04

η

0.20

94.41

0.04

0.66

0.67

0.49

0.36

0.59

ξ

34.38

94.41

34.76

457.40

114.83

115.76

20.82

15.13

20.32

18.22

25.70

R

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

σiso

-308.86

-369.81

-300.88

250.24

95.45

96.15

24.41

24.06

31.18

30.53

14.44

σaniso

73.12

200.70

151.98

838.44

219.40

220.75

31.60

30.91

52.99

51.35

49.86

Ω

92.25

358.46

241.55

951.07

249.60

250.98

51.37

51.16

78.52

77.00

64.74

K

0.01

-0.76

-0.48

0.53

0.52

0.52

0.54

-0.58

-0.30

-0.33

0.08

η

0.75

0.23

0.34

0.25

0.60

0.56

ξ

48.74

133.80

101.32

558.96

146.27

147.17

21.07

20.61

35.32

34.23

33.24

R

2.30

2.30

2.30

2.30

2.30

2.30

2.30

2.30

2.30

2.30

2.30

σiso

-381.54

-292.79

-379.97

196.89

87.49

86.74

47.01

44.10

65.02

65.73

67.37

σaniso

177.07

358.92

550.47

485.77

127.46

124.12

56.47

56.44

167.62

169.38

129.52

Ω

246.00

510.61

891.29

534.86

140.63

136.44

73.04

76.00

204.97

207.17

153.76

K

-0.12

-0.19

-0.53

0.63

0.63

0.64

0.09

-0.03

0.27

0.27

0.37

η

0.38

0.84

0.01

0.07

ξ

118.04

239.28

336.98

323.85

84.97

82.75

37.65

37.63

111.75

112.92

86.35

R

3.90

3.90

3.90

3.90

3.90

3.90

3.90

3.90

3.90

3.90

3.90


Table 8: NMR calculated parameters (ppm) for ZrC nano-sheets.

Element

H34

H35

H36

H37

H38

H39

H40

H41

H42

H43

He44

    Ne44

σiso

27.56

101.04

101.04

29.42

29.42

34.23

34.23

24.53

20.15

20.15

0.00

27.56

σaniso

39.24

239.51

239.49

15.62

15.50

46.00

45.95

15.52

23.89

23.89

0.00

39.24

Ω

60.91

252.79

252.76

20.39

20.25

59.35

59.30

25.35

41.44

41.40

0.00

60.91

K

-0.42

0.79

0.79

0.06

0.06

0.10

0.10

-0.55

-0.69

-0.69

0.00

-0.42

η

0.18

0.18

0.12

0.12

0.71

0.71

0.00

ξ

26.16

159.68

159.66

10.41

10.34

30.66

30.63

10.35

15.93

15.93

0.00

26.16

R

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

σiso

24.41

123.98

124.04

29.07

30.33

39.62

38.93

24.78

24.04

24.34

5.91

24.41

σaniso

33.85

326.61

326.52

27.71

29.83

55.02

49.69

12.21

18.81

18.11

33.94

33.85

Ω

48.95

343.18

342.98

36.21

37.93

64.91

60.84

20.68

32.39

31.76

39.77

48.95

K

-0.23

0.81

0.81

0.06

0.05

0.13

0.27

-0.64

-0.68

-0.72

0.14

-0.23

η

0.52

0.24

0.34

0.17

0.22

0.47

0.52

ξ

22.56

217.74

217.68

18.47

19.89

36.68

33.12

8.14

12.54

12.07

22.63

22.56

R

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

σiso

24.94

126.72

127.08

29.43

30.90

40.15

39.53

24.83

24.14

24.41

6.90

24.94

σaniso

33.79

337.13

337.76

27.59

30.70

56.78

50.19

12.26

18.88

18.16

32.35

33.79

Ω

48.78

354.50

354.93

36.20

38.80

66.44

61.73

20.68

32.61

31.95

40.67

48.78

K

-0.23

0.80

0.81

0.05

0.16

0.42

0.25

-0.63

-0.68

-0.72

0.18

-0.23

η

0.50

0.24

0.40

0.14

0.22

12.59

0.12

0.50

ξ

22.53

224.75

225.18

18.39

20.46

37.85

33.46

8.18

12.59

12.10

21.57

22.53

R

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

σiso

23.60

133.99

133.38

30.11

28.86

41.43

41.03

25.70

24.59

24.41

11.20

0.00

σaniso

39.67

356.58

355.88

31.39

27.30

60.49

56.46

10.63

17.95

17.99

29.87

0.00

Ω

51.71

373.39

372.76

39.77

36.36

69.42

66.52

19.40

31.78

30.89

39.47

0.00

K

0.07

0.82

0.82

0.16

0.00

0.49

0.40

-0.81

-0.74

-0.67

0.03

0.00

η

0.65

0.25

0.13

0.33

0.35

0.00

ξ

26.45

237.72

237.25

20.93

18.20

40.33

37.64

7.09

11.97

11.99

19.91

0.00

R

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

0.00

σiso

16.56

155.53

154.42

32.85

31.31

47.11

46.97

28.29

23.46

24.05

0.00

643.11

σaniso

49.55

438.77

435.51

34.86

43.34

60.04

60.18

12.88

22.52

21.46

0.00

898.70

Ω

64.06

461.39

458.31

48.94

57.49

68.19

69.42

21.62

37.13

36.05

0.00

1107.73

K

0.09

0.80

0.27

0.15

0.02

0.52

0.47

-0.62

-0.57

-0.62

0.00

0.25

η

0.95

0.15

0.03

0.30

0.31

0.00

0.02

ξ

33.03

292.51

290.34

23.24

28.90

40.03

40.12

8.59

15.01

14.30

0.00

599.13

R

2.30

2.30

2.30

2.30

2.30

2.30

2.30

2.30

2.30

2.30

0.00

2.30

σiso

65.62

109.09

110.97

19.39

24.88

30.23

34.19

16.09

33.33

33.30

0.00

-388.79

σaniso

133.60

255.72

260.18

37.72

37.65

53.68

49.51

48.64

40.06

43.65

0.00

270.40

Ω

159.30

268.32

272.67

51.23

48.48

69.85

69.78

81.22

52.08

56.50

0.00

514.57

K

0.35

0.81

0.27

0.06

0.11

0.07

0.06

-0.60

0.08

0.17

0.00

-0.90

η

0.35

0.67

0.66

0.95

0.30

0.31

0.45

0.00

0.05

ξ

89.07

170.48

173.45

25.15

25.10

35.79

33.01

32.42

26.71

29.10

0.00

180.26

R

3.90

3.90

3.90

3.90

3.90

3.90

3.90

3.90

3.90

3.90

0.00

3.90

 

Table 9: Donor NBO, acceptor NBO, E2, Ei- Ej and F(i,j) for ZrC nano-sheet.

Donor NBO (i) Acceptor NBO (j) E(2)  kcal/mol E(i)-E(j)  a.u. F (i , j)  a.u.
BD(1)  C1-Zr15 LP*(2)  Zr15 1.02 0.54 0.02
BD(1)  C1-Zr15 LP*(2)  Zr16 1.29 0.59 0.03
BD(1)  C1-Zr15 RY*(5)  Zr15 2.08 1.80 0.06
BD(1)  C4-Zr15 RY*(8)  Zr20 0.93 1.55 0.03
BD(1)  C4-Zr16 LP*(3)  Zr15 8.10 0.58 0.06
BD(1)  C4-Zr16 RY*(2)  Zr15 1.61 0.77 0.03
BD(1)  C4-Zr16 BD*(1) C4-Zr15 1.96 0.51 0.03
BD(1)  C7-Zr22 LP*(4) Zr15 8.09 0.48 0.06
BD(1)  C7-Zr22 LP*(1) Zr19 42.10 0.58 0.15
BD(1)  C7-Zr22 RY*(6) Zr20 4.81 3.70 0.13
BD(1)  C8-Zr14 LP*(4) Zr20 17.58 0.60 0.09
BD(1)  C8-Zr14 RY*(5) Zr14 4.79 2.04 0.09
BD(1)  C8-Zr14 BD*(1) C2-Zr14 4.31 0.64 0.05
BD(3)  C11-Zr17 LP*(1) Zr22 20.44 0.28 0.07
BD(3)  C11-Zr17 RY*(1) C6 15.78 2.21 0.18
BD(3)  C11-Zr17 BD*(2) C7-Zr18 5.40 0.21 0.03
CR(1) Zr14 LP*(4) Zr14 2.96 2.00 0.07
CR(1) Zr14 RY*(2) C3 1.31 4.47 0.07
CR(3) Zr14 BD*(1) C8-Zr14 8.12 1.41 0.10
CR(3) Zr24 BD*(1) C9-Zr24 2.06 1.42 0.05
CR(1) Zr25 LP* Zr23 1.28 2.13 0.05
CR(1) Zr25 RY*(1) C12 1.38 4.31 0.07
CR(3) Zr25 BD*(1) Zr25-H41 7.11 1.48 0.09
LP(1) C4 LP*(3)  Zr16 65.91 0.06 0.07
LP(1) C4 RY*(3) C4 2.59 0.65 0.05
LP(1) C4 BD*(2) C9-Zr20 3.51 0.12 0.02
LP(1) C10 RY*(6) Zr21 1.56 2.23 0.06
LP(2) C10 LP*(1) Zr21 17.10 0.22 0.07
LP(2) C10 BD*(1) C10-Zr16 8.62 0.23 0.05
LP*(3) C10 LP*(3) Zr16 9.49 0.03 0.02
LP*(3) C10 RY*(3) Zr16 4.56 0.12 0.04
LP(1) C11 LP*(1) Zr22 73.50 0.62 0.20
LP*(2) Zr16 LP*(5) Zr16 36.02 0.08 0.13
LP*(2) Zr16 RY*(1) C4 9.82 2.44 0.40
LP*(2) Zr16 BD*(1) C9-Zr21 2.65 0.02 0.02
LP*(2) Zr18 BD*(1) C7-Zr18 181.25 0.02 0.19
LP*(1) Zr19 LP*(6) Zr21 1.45 0.03 0.01
BD*(1) C4-Zr16 LP*(2) Zr15 3.91 0.03 0.02
BD*(1) C4-Zr16 RY*(5) Zr16 6.47 0.86 0.19
BD*(1) C4-Zr16 BD*(1) C4-Zr16 26.24 0.06 0.09
BD*(1) C4-Zr20 LP*(3) Zr20 25.68 0.04 0.08
BD*(1) C4-Zr20 RY*(2) C9 2.46 2.04 0.26
BD*(1) C4-Zr20 BD*(1) C9-Zr21 3.06 0.04 0.04
BD*(1) C7-Zr22 LP*(6) Zr22 32.44 0.07 0.14
BD*(1) C7-Zr22 RY*92) C11 2.49 1.06 0.16
BD*(1) C7-Zr22 BD*(1) C6-Zr18 8.49 0.02 0.04
BD*(2) C8-Zr14 LP*(1) Zr20 19.48 0.06 0.06
BD*(2) C8-Zr14 RY*(8) Zr14 1.77 1.25 0.14
BD*(2) C8-Zr14 BD*(1) C2-Zr14 6.81 0.23 0.10
BD*(1) C10-Zr16 LP*(5) Zr16 18.85 0.17 0.14
BD*(1) C10-Zr16 RY*(1) C4 6.46 2.54 0.32
BD*(1) C10-Zr16 BD*(1) C4-Zr20 9.96 0.07 0.06

 

Table 10: NBO data obtained for ZrC nano-sheet. Table 10: NBO data obtained for ZrC nano-sheet. 



Click here to View table

 

Table 11. NBO data obtained for ZrC nano-sheet.

Bond orbital

Occupancy

Energy (a.u.)

Principal Delocalizations (geminal,vicinal,remote)
BD(1) C1-Zr15

1.98373

-0.38248

198(v),202(v),379(g),367(g),254(g),376(g),135(r),380(v)
BD(1) C1-H26

1.97552

-0.50224

129(v),376(v),198(r),130(v),
BD(1) C1-H27

1.96990

-0.51236

131(v),129(v),133(v),128(v),250(v),132(v)
BD(1) C1-H28

1.96990

-0.51236

131(v),129(v),133(v),128(v),250(v),132(v)
BD(1) C2-Zr14

1.87635

-0.39438

391(g),388(v),372(g),194(g),390(g),152(r),371(g),217(v)
BD(1) C2-Zr18

1.87918

-0.39632

388(g),391(v),153(r),371(g),194(g),387(g),281(g),372(g)
BD(1) C2-H29

1.94058

-0.52581

125(v),147(v),371(g),372(g),149(v),123(v),145(v),127(v)
BD(1) C2-H30

1.94058

-0.52581

125(v),147(v),371(g),372(g),149(v),123(v),145(v),127(v)
BD(1) C3-Zr14

1.88956

-0.40019

129(v),391(g),159(r),367(v),390(g),250(v),198(g),379(v)
BD(1) C3-Zr15

1.92367

-0.40181

391(v),375(g),198(g),379(g),254(g),202(v),158(r),124(v)
BD(1) C3-H31

1.94199

-0.52777

125(v),131(v),129(v),126(v),375(g),123(v),130(v),128(v)
BD(1) C3-H32

1.94199

-0.52777

125(v),131(v),129(v),126(v),375(g),123(v),130(v),128(v)
BD(1) C4-Zr15

1.84134

-0.37546

158(v),135(v),202(g),367(g),376(g),379(g),254(g),397(v)
BD(1) C4-Zr16

1.80468

-0.37983

130(v),156(v),158(v),201(g),376(v),380(g),251(v),266(g)
BD(1) C4-Zr20

1.83764

-0.40757

130(v),135(v),129(v),367(v),202(g),251(v),393(g),300(g)
BD(1) C5-Zr16

1.97472

-0.37614

137(g),397(g),226(v),380(g),201(v),263(g),225(v),130(r)
BD(1) C6-Zr17

1.91668

-0.38631

146(v),384(g),388(v),209(g),229(v),171(r),170(r),276(g)
BD(1) C6-Zr18

1.90495

-0.40200

388(g),170(r),140(v),398(v),143(v),387(g),389(v),209(g)
BD(1) C6-H33

1.94949

-0.53273

141(v),147(v),148(v),143(v),384(g),398(v),145(v),149(v)
BD(1) C6-H34

1.94949

-0.53272

141(v),147(v),148(v),143(v),384(g),398(v),145(v),149(v)
BD(1) C7-Zr18

1.84433

-0.37698

153(r),150(r),170(v),213(g),281(g),283(g),387(g),372(g)
BD(2) C7-Zr18

1.57708

-0.23816

150(r),153(r),372(g),389(g),155(r),401(v),291(r),214(g)
BD(1) C7-Zr22

1.78537

-0.4575

150(r),153(r),152(r),148(v),146(v),318(g),401(g),214(g)
BD(1) C8-Zr14

1.83807

-0.38263

159(r),156(r),152(v),217(g),245(g),390(g),371(g),375(g)
BD(2) C8-Zr14

1.58330

-0.23222

156(r),392(g),371(g),159(r),300(r),375(g),405(v),218(g)
BD(1) C8-Zr19

1.77726

-0.46424

156(r),158(r),159(r),124(v),126(v),405(g),291(g),218(g)
BD(1) C9-Zr20

1.80968

-0.35059

164(v),180(v),222(g),300(g),381(g),393(g),167(v),202(v)
BD(2) C9-Zr20

1.62616

-0.16274

163(v),179(v),113(v),118(r),394(g),182(v),166(v),409(v)
BD(1) C9-Zr21

1.80205

-0.34607

159(v),181(v),221(g),156(v),309(g),310(g),225(r),311(g)
BD(1) C9-Zr24

1.78070

-0.35801

158(v),165(v),159(v),335(g),221(g),162(v),153(r),333(g)
BD(1) C10-Zr16

1.74407

-0.21505

162(r),120(g),309(r),382(g),395(r),310(r),264(g),221(r)
BD(1) C11-Zr17

1.82339

-0.26782

168(r),170(r),389(r),318(r),384(v),210(v),281(r),315(r)
BD(2) C11-Zr17

1.73945

-0.20625

169(r),172(r),402(r),399(g),147(r)
BD(3) C11-Zr17

1.64828

-0.17603

383(g),168(r),209(v),229(g),170(r),276(g),144(g),273(g)
BD(1) C12-Zr22

1.81307

-0.35038

175(v),186(v),185(v),234(g),318(g),152(r),389(g),401(g)
BD(2) C12-Zr22

1.67215

-0.16192

184(v),174(v),117(v),177(v), 402(g),417(v),416(v),411(v)
BD(1) C12-Zr23

1.78745

-0.35910

170(v),186(v),168(v),171(v),185(v),327(g),152(r),233(g)
BD(1) C12-Zr25

1.77135

-0.34288

170(v),176(v),233(g),347(g),345(g),403(g),404(g),407(v)
BD(1) C13-Zr19

1.79781

-0.34458

180(v),175(v),291(g),239(g), 158(r),176(v),181(v),392(g)
BD(2) C13-Zr19

1.66267

-0.15947

 179(v),174(v),118(v),117(r),177(v),406(g),182(v),413(v)
BD(1) C13-Zr23

1.77337

-0.34846

152(v),181(v),328(g),237(g),327(g),153(v),325(g),407(g)
BD(1) C13-Zr24

1.78062

-0.3465

153(v),176(v),150(v),237(g),335(g),333(g),338(g),158(r)
BD(1) Zr21-H35

1.97856

-0.27784

181(r),395(g),309(g),221(v),226(r),410(g),311(g),409(g)
BD(1) Zr21-H36

1.97856

-0.27784

181(r),395(g),309(g),221(v),226(r),410(g),311(g),409(g)
BD(1) Zr23-H37

1.97325

-0.26400

407(g),403(g),327(g),412(g), 328(g),181(r),411(g),325(g)
BD(1) Zr23-H38

1.97325

-0.26399

407(g),403(g),327(g),411(g),328(g),181(r),412(g),325(g)
BD(1) Zr24-H39

1.97263

-0.26403

335(g),408(g),396(g),414(g),333(g),176(r),413(g),338(g)
BD(1) Zr24-H40

1.97263

-0.26403

335(g),408(g),396(g),413(g),333(g),176(r),414(g),338(g)
BD(1) Zr25-H41

1.98279

-0.28534

176(r),233(v),403(v),347(g),345(g),415(g),404(g),186(g)
BD(1) Zr25-H42

1.98706

-0.28989

170(r),233(v),401(v),347(g),345(g),416(g),404(g),186(g)
BD(1) Zr25-H43

1.98708

-0.28988

 170(r),233(v),401(v),347(g),345(g),417(g),404(g),186(g)

Table 12: NBO data obtained for ZrC nano-sheet.

Anti-bond orbital

occupancy

Energy (a.u.)

Principal Delocalizations (geminal,vicinal,remote)
BD*(1) C1-Zr15

0.08550

0.18061

BD*(1) C1-H26

0.00541

0.43210

BD*(1) C1-H27

0.00266

0.41015

BD*(1) C1-H28

0.00266

0.41015

BD*(1) C2-Zr14

0.05123

0.26086

BD*(1) C2-Zr18

0.05282

0.24344

BD*(1) C2-H29

0.00645

0.38445

BD*(1) C2-H30

0.00645

0.38445

BD*(1) C3-Zr14

0.04920

0.20248

BD*(1) C3-Zr15

0.09122

0.16266

BD*(1) C3-H31

0.00552

0.38286

BD*(1) C3-H32

0.00552

0.38286

BD*(1) C4-Zr15

0.06137

0.14929

BD*(1) C4-Zr16

0.25867

0.12714

397(g),135(g),382(g),138(g),367(v),263(g),264(g),167(r)
BD*(1) C4-Zr20

0.11472

0.17910

161(g),393(g),367(v),156(g),376(v),158(g),130(v),135(v)
BD*(1) C5-Zr16

0.07495

0.18628

BD*(1) C6-Zr17

0.05019

0.10942

BD*(1) C6-Zr18

0.04822

0.16615

BD*(1) C6-H33

0.00811

0.38476

BD*(1) C6-H34

0.00811

0.38476

BD*(1) C7-Zr18

0.07858

0.13874

BD*(2) C7-Zr18

0.18505

0.03638

391(r),398(r),148(g),372(g),142(r),387(g),389(g),194(v)
BD*(1) C7-Zr22

0.17446

0.14381

178(r),168(g),171(g),173(g),401(g),146(v),387(g),170(g)
BD*(1) C8-Zr14

0.07353

0.16132

BD*(2) C8-Zr14

0.18042

0.03385

388(r),156(r),371(g),248(g),148(r),126(g),132(r),398(r)
BD*(1) C8-Zr19

0.16937

0.16125

390(g),155(g),150(g),183(r),405(g),152(g),124(v),171(r)
BD*(1) C9-Zr20

0.10944

0.18614

161(g),381(g),158(g),159(g),156(g),152(r),382(r),392(r)
BD*(2) C9-Zr20

0.05482

-0.01496

BD*(1) C9-Zr21

0.05594

0.22193

BD*(1) C9-Zr24

0.05313

0.25934

BD*(1) C10-Zr16

0.24848

0.10963

162(r),380(g),382(g),138(g),137(g),263(g),165(r),381(v)
BD*(1) C11-Zr17

0.10723

0.03839

142(g),388(r),140(g),383(g),168(r),148(r),171(r),274(g)
BD*(2) C11-Zr17

0.01233

-0.06254

BD*(3) C11-Zr17

0.07111

-0.04834

BD*(1) C12-Zr22

0.11810

0.18386

173(g),170(g),168(g),389(g),171(g),186(v),318(g),393(r)
BD*(2) C12-Zr22

0.07090

-0.01535

BD*(1) C12-Zr23

0.05293

0.25962

BD*(1) C12-Zr25

0.02426

0.20015

BD*(1) C13-Zr19

0.10442

0.18157

155(g),152(g),161(r),150(g),392(g),153(g),291(g),403(v)
BD*(2) C13-Zr19

0.05090

-0.01106

BD*(1) C13-Zr23

0.05252

0.2651

BD*(1) C13-Zr24

0.05217

0.26843

BD*(1) Zr21-H35

0.03795

0.29819

BD*(1) Zr21-H36

0.03795

0.29819

BD*(1) Zr23-H37

0.03744

0.31509

BD*(1) Zr23-H38

0.03744

0.31509

BD*(1) Zr24-H39

0.03774

0.31342

BD*(1) Zr24-H40

0.03774

0.31342

BD*(1) Zr25-H41

0.02631

0.29533

BD*(1) Zr25-H42

0.02580

0.28437

BD*(1) Zr25-H43

0.02580

0.28434

Table 13: NBO data obtained for ZrC nano-sheet.

Bond orbital Hybrids

occupancy

Energy (a.u.)

Principal Delocalizations (geminal,vicinal,remote)
LP(1) C4 p1

1.08443

-0.13154

128(v),136(v),157(v),118(r),160(v),394(v),203(g),133(v)
LP(1) C5 sp0.26

1.93287

-0.49829

137(v),138(v),259(v),380(v), 382(g)
LP*(2) C5 p1

0.41763

-0.10948

134(v),261(v),136(v),208(g)
LP(1) C7 p1

1.07813

-0.13127

145(v),151(r),169(v),172(v),118(r),154(r),406(r),402(v)
LP(1) C8 p1

1.07686

-0.13332

123(v),157(r),151(v),113(r),117(r),154(v),160(r),394(r)
LP*(3) C10 p1

0.61329

-0.09993

134(v),163(r),136(v),261(v),166(r),227(g)
LP(1) C11 sp0.01

1.68229

-0.52044

168(r),171(r),398(g),140(v),173(r),318(r),142(v),170(r)
LP*(1) Zr14 p1d18.41

0.52930

-0.13087

118(v),127(g),131(r),128(r),147(r),145(r),219(v)
LP*(2) Zr14 sp3.55d1.43

0.08110

0.14065

LP*(3) Zr14 d1

0.06630

-0.12332

LP*(4) Zr14 sp1.11d1.51

0.05044

-0.02547

LP*(5) Zr14 p1d0.05

0.01962

-0.03089

LP*(1) Zr15 p1d20.57

0.52125

-0.12969

113(v),125(r),133(g),123(r),203(v),134(r)
LP*(3) Zr15 sp12.13d3.21

0.06205

0.20316

LP*(5) Zr15 sp0.24d1.15

0.02507

-0.05004

LP*(6) Zr15 p1d0.06

0.01702

-0.02474

LP(1) Zr16 d1

0.87838

-0.10625

115(v),121(v),157(r),208(v), 131(r),227(v),128(r)
LP*(2) Zr16 sp37.59d5.94

0.23225

0.20627

130(r),158(r),380(g),382(g),138(g),161(r),259(g),381(v)
LP*(3) Zr16 p1d17.86

0.20667

-0.07291

113(v),121(v),115(v)
LP*(5) Zr16 sp0.24d2.41

0.01268

0.28256

LP*(6) Zr16 sp0.5d47.53

0.00663

0.35322

LP*(2) Zr17 p1d20.52

0.03212

-0.11491

LP*(3) Zr17 sp1.34d3.36

0.01403

0.02117

LP*(4) Zr17 sp39.14d16.39

0.00749

0.12593

LP*(5) Zr17 sp7.19d26.54

0.00170

0.48873

LP*(1) Zr18 p1d18.07

0.51905

-0.12784

 117(v),125(r),149(g),141(r), 123(r),215(v)
LP*(4) Zr18 sp3.38d1.87

0.05246

0.02255

LP*(5) Zr18 p1d0.06

0.01987

-0.02952

LP*(1) Zr19 sp0.02d3.32

0.42505

0.12366

392(g),146(r),155(g),405(g), 124(r),291(g),390(v),387(r)
LP*(5) Zr19 sp1d0.05

0.07903

0.01102

LP*(6) Zr19 sp0.01d1.70

0.01688

0.19351

LP*(1) Zr20 sp0.04d3.67

0.43730

0.09827

161(g),381(g),393(g),162(r), 124(r),300(g),379(v),391(r)
LP*(2) Zr20 d1

0.28767

-0.08721

113(v),118(r),151(r),
LP*(5) Zr20 p1d0.05

0.07839

0.00895

LP*(6) Zr20 sp0.01d1.92

0.01508

0.18303

LP*(1) Zr21 sp0.15d3.02

0.44749

0.09343

397(r),164(g),156(r),395(g),309(g),137(r),159(r),409(g)
LP*(3) Zr21 sp23.76d46.78

0.18557

0.05714

162(g),167(g),395(g),156(r),311(g),120(r),137(r),309(g)
LP*(5) Zr21 p1d0.10

0.04554

0.09303

LP*(1) Zr22 sp0.01d3.16

0.44506

0.10073

389(g),173(g),401(g),146(r), 140(r),383(r),318(g),387(v)
LP*(5) Zr22 p1d0.05

0.04554

0.09303

LP*(6) Zr22 sp0.01d2.04

0.01593

0.21149

LP*(1) Zr23 d1

0.21798

-0.02355

402(v),406(v),179(r)
LP*(4) Zr23 p1d0.1

0.06840

0.09729

LP*(5) Zr23 sp44.05d41.84

0.01931

0.14701

LP*(3) Zr24 p1d0.17

0.07833

0.20896

LP*(4) Zr24 p1d0.09

0.06521

0.09907

LP*(5) Zr24 sp43.43d41.74

0.01823

0.15747

LP*(1) Zr25 p1d5

0.14120

-0.00869

402(v),188(g),417(g),416(g)
LP*(5) Zr25 p1d0.45

0.00186

0.08665

 

Table 14: NBO data obtained for ZrC nano-sheet.

Bond orbital Hybrids

occupancy

Energy (a.u.)

Principal Delocalizations (geminal,vicinal,remote)
RY*(3) C1 sp1

0.00024

0.33256

RY*(4) C1 sp0.11

0.00007

0.92498

RY*(3) C2 p1

0.00041

0.43388

RY*(4) C2 sp0.01

0.00004

1.18757

RY*(3) C3 p1

0.00042

0.43448

RY*(4) C3 sp0.01

0.00004

1.20722

RY*(2) C5 sp7.01

0.00017

0.77147

RY*(3) C5 sp0.15

0.00006

0.92957

RY*(3) C7 p1

0.00090

0.52589

RY*(4) C7 s

0.00009

1.33142

RY*(1) C8 sp1

0.00260

2.61231

RY*(3) C9 p1

0.00165

0.56797

RY*(4) C9 s

0.00009

1.15787

RY*(3) C10 p1

0.00038

0.48718

RY*(4) C10 sp1

0.00007

1.13012

RY*(2) C11 sp50.44

0.00150

1.20168

RY*(3) C12 p1

0.00157

0.55631

RY*(4) C12 sp0.01

0.00013

1.12406

RY*(1) C13 p1

0.00221

2.22964

RY*(2) C13 p1

0.00168

0.57304

RY*(1) Zr14 sp1.27d56.72

0.00782

0.36402

RY*(5) Zr14 sp0.02d0.03

0.00063

1.66041

RY*(6) Zr14 p1d8.72

0.00051

0.18271

RY*(7) Zr14 sp63.63d2.23

0.00018

0.96663

RY*(8) Zr14 sp72.29d1.12

0.00013

1.28692

RY*(9) Zr14 p1d0.11

0.00006

0.14785

RY*(4) Zr15 p1d17.68

0.00063

0.20871

RY*(5) Zr15 sp0.1d0.02

0.00035

1.42188

RY*(6) Zr15 sp11.66d0.34

0.00017

0.43745

RY*(7) Zr15 p1d21.51

0.00014

0.20366

RY*(8) Zr15 sp43.68d2.83

0.00011

0.75233

RY*(9) Zr15 p1d0.1

0.00002

0.13125

RY*(9) Zr15 sp0.42d7.48

0.00026

1.70012

RY*(7) Zr20 sp16.74d0.07

0.00013

1.16867

RY*(8) Zr20 p4.86d0.01

0.00004

0.16653

RY*(9) Zr20 p1d0.04

0.00037

0.26992

RY*(4) Zr21 p1d43.68

0.00022

0.26198

RY*(5) Zr21 sp1d6.91

0.00015

1.72160

RY*(6) Zr21 sp0.02d0.01

0.00054

0.31591

RY*(2) Zr25 sp3.49d44.51

0.00024

0.34902

RY*(3) Zr25 sp0.47d7.32

0.00013

0.29668

RY*(4) Zr25 p1d15.74

0.00010

0.20213

RY*(5) Zr25 p1d8.24

0.00007

1.37764

RY*(6) Zr25 sp0.26d0.13

0.00003

0.47172

RY*(7) Zr25 sp15.90d1.55

0.00002

0.85348

RY*(8) Zr25 sp10.31d0.11

0.00084

0.95528

RY*(1) H26 s

0.00084

0.91930

RY*(1) H27 s

0.00140

1.33327

RY*(1) H39 s

0.00140

1.33327

 

Table 15: NBO data obtained for ZrC nano-sheet.

Bond orbital Hybrids

occupancy

Energy (a.u.)

Principal Delocalizations (geminal,vicinal,remote)
CR ( 1)  C1 S

1.99928

-10.0579

129(v),250(v),349(v),252(v),350(v),351(v)
CR ( 1) C 2 S

1.99919

-10.0587

277(v),241(v),243(v),352(v),353(v),146(v)
CR ( 1) C 3 S

1.99919

-10.0596

129(v),252(v),243(v),250(v),242(v),130(v)
CR ( 1) C 4 S

1.99940

-10.0365

130(v),158(v),135(v),296(v),260(v),251(v)
CR ( 1) C 5 S

1.99986

-10.0997

137(v)
CR ( 1) C 6 S

1.99921

-10.0683

279(v),143(v),356(v),357(v),148(v)
CR ( 1) C 7 S

1.99939

-10.0352

150(r),153(r),148(v),152(r),170(v),171(v)
CR ( 1) C 8 S

1.99937

-10.0357

156(r),159(r),158(r),152(v),124(v),126(v),391(g)
CR ( 1) C 9 S

1.99945

-10.0062

159(v),295(v),181(v),165(v),158(v),167(v),332(v)
CR ( 1) C 10 S

1.99959

-10.0748

162(r),397(g),137(v),165(r),139(v),164(r)
CR ( 1) C 11 S

1.99958

-10.0937

168(r),171(r),140(v),398(g),315(r)
CR ( 2) Zr 15 P1

1.99113

-1.25942

376(g),367(g),375(v)
CR ( 4) Zr 15 P1

1.99637

-1.30639

113(v),133(g)
CR ( 3) Zr 17 P1

1.98472

-1.24792

398(g),400(g),383(g),168(r),171(r)
CR ( 1) Zr 18 S

1.97949

-2.02139

387(g),384(g),389(v),153(r),372(g),371(v),213(v)
CR ( 2) Zr 18 P1

1.99008

-1.25726

372(g),384(g),371(v)
CR ( 3) Zr 18 P1

1.98335

-1.24663

387(g),389(v),153(r),384(g),150(r)
CR ( 4) Zr 18 P1

1.99607

-1.30455

117(v),149(g)
CR ( 1) Zr 19 S

1.97309

-1.95986

405(g),239(v),214(r),387(r),392(g),218(v)
CR ( 2) Zr 19 P1

1.98709

-1.20913

392(g),390(v),387(r),388(r),158(r)
CR ( 3) Zr 19 P1

1.98499

-1.19880

405(g),408(v),407(v)
CR ( 4) Zr 19 P1

1.99638

-1.25218

154(g),118(v),117(r)
CR ( 1) Zr 21 S

1.99048

-1.91981

397(r),396(v),393(v),162(g),120(r),159(r),221(v)
CR ( 2) Zr 21 P1

1.98533

-1.17436

395(g),397(r),120(r),393(v),396(v),181(r)
CR ( 3) Zr 21 P1

1.98352

-1.17583

409(g),410(g),395(g),120(r),397(r)
CR ( 4) Zr 21 P1

1.98354

-1.18374

 409(g),410(g),121(r),166(g)
CR ( 1) Zr 24 S

1.98720

-1.90073

393(v),405(v),407(v),395(v),396(g),159(r),165(r),413(g)
CR ( 2) Zr 24 P1

1.98232

-1.16198

396(g),408(g),393(v),405(v),407(v),395(v)
CR ( 3) Zr 24 P1

1.98283

-1.16487

413(g),414(g),408(g),396(g),407(v)
CR ( 4) Zr 24 P1

1.98546

-1.17348

413(g),414(g),182(g)

 

Conclusion

In this study, from the theoretical analysis of the zirconium carbide nano-sheets, the following were obtained: Polar determinant (Dipole moment, Quadrupole moment, Traceless Quadrupole moment and Octapole moment), EPR data (voltage and voltage difference), NMR parameters (isotropic shielding tensor, anisotropic shielding tensor, asymmetry, span and skew) and NBO data (bonding and anti-bonding orbitals, hybridization of atomic orbitals, energy and Principal Delocalizations).

References

  1. Dubey, S.P.; Dwivedi, A.D.; Kim, I.C.; Sillanpaa, .M.; Kwon, N.Y. and Lee, C.; Chemical Engineering Journal, 2014, 244 , 160–167.
  2. Kroto, H. W.; Health, J. R.; O’Brien, S. C.; Curl, R. F. and Smalley, R. E. ; Nature (London), 1985, 318, 162.
  3. Sun, H. and Yang, X.; Colloids and Surfaces A: Physicochem. Eng. Aspects, 2014, 462, 82–89
  4. Sumio,I.; Nature (London), 1991. 354, 56.
  5. Wang, Z.; Qin, S.; Wang, C. and Hui, Q.; Computational Materials Science, 2015, 97, 14–19.
  6. Monajjemi , M.; Baheri, H. and Mollaamin, F.  Journal of Structural Chemistry, 2011 52(1), 54-59.
  7. Monajjemi, M.; Hosseini, M. S. and Mollaamin, F., Fullerenes, Nanotubes, and Carbon Nanostructures. 2013, 21, 381–393.
  8. Wang, F.; Wang, F.; Zhu, D. and Chen, W.; Environmental Pollution, 2015,196 , 371-378.
  9. Sumio, I.; Masako, Y. and Fumiyuki, N.; NEC Technical Journal, 2007, 2,1.
  10. Liu, M.; Xua, J.; Cheng, B.; Ho, W. and Yu, J.; Applied Surface Science, 2015, 332 , 121–129.
  11. Monajjemi, M.;  Karachi, N. and Mollaamin, F;  Fullerenes, Nanotubes, and Carbon
  12. Nanostructures, 2014, 22, 643–662.
  13. Monajjemi, M.; Khaleghian, M.; Tadayonpour, N. and Mollaamin, F.; International Journal of Nanoscience, 2010, 9 (05), 517-529.
  14. Li, X.; Zhou, H.; Wu, W.; Wei, S.; Xu, Y. and Kuang, Y.; Journal of Colloid and Interface Science, 448 (2015) 389–397.
  15. Zheng, Q.; Wang, X. and Gao, S.; Cryogenics, 2014, 61, 143–148.
  16. Mollaamin , F .; Najafi, F.; Khaleghian, M.;  Hadad, B. K. and Monajjemi, M.  Fullerenes, Nanotubes, and Carbon Nanostructures, 2011 ,19, 653–667.
  17. Monajjemi, M.;  Chegini , H.; Mollaamin , F. and Farahani, P.; Fullerenes, Nanotubes, and Carbon Nanostructures, 2011,19, 469–482.
  18.  Sijbesma, R.;  Srdanov, G.;  Wudl, F.;  Castoro, J. A.;  Wilkins, C.;  Friedman, S. H.; DeCamp, D. L. and  Kenyon, G. L.; J. Am. Chem. Soc., 1993, 115 (15), 6510–6512.
  19. Sachdeva, H.; Müllera, F.; Hüfnerb, S.; Diamond and Related Materials, 2010, 19, 1027-1033.
  20. Monajjemi, M.; Yamola, H. and Mollaamin, F.; Fullerenes, Nanotubes, and Carbon Nanostructures, 2014, 22, 595–603.
  21. Monajjemi, M.;  Journal of Molecular Modeling , 2014, 20:2507.
  22.  Wei, D.;  Liu,Y,;  Wang, Y.; Zhang, H.;  Huang,L. and  Yu, G.; Nano Lett., 2009, 9 (5), 1752–1758.
  23. Zhao,W.; Tang, Y.; Xi, J. and Kong, J.; Applied Surface Science, 2015, 326, 276–284.
  24. Castillo, E. D.; Cargnoni, F.; Achilli, S.; Tantardini, G.F. and Trioni, M.I.; Surface Science, 2015, 634, 62–67.
  25. Wanga, N.; Changb, P. R.; Zhengc, P. and Mad, X.; Applied Surface Science, 2014, 314, 815–821.
  26. Navarro, C. G.;  Weitz, R. T.;  Bittner, A. M.; Scolari, M.; Mews, A.;  Burghard , M. and  Kern, K.; Nano Lett., 2007, 7 (11), 3499–3503.
  27. Wanga, X.; Liua, B.; Luc, Q. and Qub, Q.; Journal of Chromatography A, 2014, 1362, 1–15.
  28. Chi, C.; Xua, H.; Zhanga, K.; Wang, Y.; Zhang, S., Liu, X.; Liu, X.; Zhao, J. and Li, Y.; Materials Science and Engineering B, 2015, 194, 62–67.
  29. Molina, J.; Fernández, J.; García, C.; del Río, A.I. ; Bonastre, J. and Cases, F.; Electrochimica Acta, 2015,1-37.
  30. Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K. and Iijima, s.; Nature,2004, 430, 870-873.
  31.  Gwon, H.; Kim, H. S.; Lee, K. U.,  Seo, D. H.,  Park, Y. C.,  Lee, Y. S. and  Ahn, B. T.; and Kang, K.; Energy Environ. Sci., 2011, 4, 1277-1283.
  32. Tao, X. T.; Qiu, W. F.; Li, H. and Zhao, T.; Chinese Chemical Letters, 2010, 21, 620–623.
  33. Tao, X.; Qiu, W.; Li, H. and Zhao, T.; Polymers for Advanced Technologies, 2010, 21(4), 300-304.
  34. Liu, C.; Liu, B.; Shao,Y.; Li, Z. and Tang, C.; J. Am. Ceram. Soc., 2007, 90 (110) 3690–3693.
  35. Long,Y.; Javed, A.; Chen, J.; Chen, Z. K.  and Xiong, X; Ceramics International, 2014, 40,707–713.
  36. Shi, X. H.; Huo, J. H.; Zhu, J. L.; Liu, L.; Li, H. J.; Hu, X. J,; Li, M. Y.; Guo, L. J. and Fu, Q. G.; Corrosion Science, 2014, 88 , 49–55.
  37. ang,Y.; Liu, Q.; Liu, J.; Zhang, L., and Cheng, L.; J. Am. Ceram. Soc., 2008, 91 (4) 1249–1252.
  38. Wang, S. L.; Lin, K. Z.; Li, H. J.; Zhang, Y. L. and Feng, T.; Ceramics International, 2014, 40, 16003–16014.
  39. Sun, W.; Xiong, X.; Huang, B.Y. ; Li, G.D.; Zhang, H.B.;  Xiao, P.;  Chen, Z.K. and Zheng, X.L.; Applied Surface Science, 2009, 255, 7142–7146.
  40. Li, Z.; Li, H.; Li, W.; Wang, J.; Zhang, S. and Guo, J.; Applied Surface Science, 2011, 258, 565– 571.
  41. Wen, B.; Ma, Z.; Liu, Y.; Wang, F.; Cai, H. and Gao, L.; Ceramics International, 2014, 40, 11825–11830
  42. Ding, M. H.; Zhang H. S.; Zhang, C. and Jin, X.; Surface & Coatings Technology, 2013, 224, 34–41.
  43. Rambo, C.R.; Cao, J.; Rusina, O. and Sieber, H.; Carbon 2005, 43,1174–1183.
  44. Aihara, J.; Ueta, S.; Yasuda, A.; Ishibashi, H.; Takayama,T.; Sawa,K. and Motohashi, Y.; J. Am. Ceram. Soc.,2007, 90 (12) 3968–3972 .
  45. Monajjemi, M.; Rajaeian, E.; Mollaamin, F.; Naderi, F. and Saki, S. Physics and Chemistry of Liquids. 2008, 46 (3), 299-306.
  46. Monajjemi, M. and Hosseini, M. S.; Journal of Computational and Theoretical Nanoscience .2013 ,10 (10), 2473-2477.
  47. Fazaeli, R.; Monajjemi, M.; Ataherian, F. and Zare, K.; Journal of Molecular Structure: Theochem, 2002, 581 (1), 51-58.
  48. Monajjemi, M.; Sobhanmanesh, A. and Mollaamin, F.; Fullerenes, Nanotubes, and Carbon Nanostructures,2013, 21, 47–63.
  49.  Monajjemi, M.; Falahati, M. and Mollaamin, F.; Ionics, 2013 , 19, 155–164.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.